编制单位和编制人员情况表

	and the same			
项目编号		3q88c1		1 E
建设项目名称		葫芦岛市南票区殡位	义馆建设项目	
建设项目类别		50—122殡仪馆、陵园	司、公墓	
环境影响评价文件类	型	报告表面		
一、建设单位情况		源人的		
単位名称 (盖章)	The state of the s	葫芦岛市南票区殡仪	文馆	
充一社会信用代码	g .	12211404E5285005X5	1 AL Jev	
去定代表人(签章)		赵耕华	印料	
主要负责人 (签字)		赵耕华	A 27140000 00004	
直接负责的主管人员	(签字)	赵耕华	東 毕	
二、编制单位情况	,		五度技术	
单位名称 (盖章)		辽宁中科尚环境技术	咨询有限公司	
充一社会信用代码		91210900095183849Q	也不愿	
三、编制人员情况		Wille	270902001007018	9
1. 编制主持人				÷
姓名	职业资格	各证书管理号	信用编号	签字
王晓红	201703521035	50000003512210544	BH001442	弘统礼
2 主要编制人员	12			
姓名	主要	编写内容	信用编号	签字
甄重	全	部内容	ВН001611	秀重
	er a	100 (100 mg/s) —		

建设项目环境影响报告表 (污染影响类)

项目名称: 葫芦岛市南票区殡仪馆建设项目

建设单位(盖章): 葫芦岛市南票区殡仪馆

编制日期: 2023年11月

中华人民共和国生态环境部制

一、建设项目基本情况

建设项目名称	葫芦岛市南票区殡仪馆建设项目			
项目代码	无			
建设单位联系人	赵耕华	联系方式	15566770429	
建设地点	辽宁省	葫芦岛市南票区兰	甲屯乡兰甲屯村	
地理坐标	(124度44	分 22.661 秒, 4	1度 06分 58.509 秒)	
国民经济 行业类别	0 8080 殡葬服务	建设项目 行业类别	五十、社会事业与服务业— 122. 殡仪馆、陵园、公墓	
建设性质	☑新建(迁建)□改建□扩建□技术改造		☑首次申报项目 □不予批准后再次申报项目 □超五年重新审核项目 □重大变动重新报批项目	
项目审批(核准/ 备案)部门(选填)	/	项目审批(核准/ 备案)文号(选填)	/	
总投资(万元)	500	环保投资(万元)	240	
环保投资占比(%)	48	施工工期	1 个月	
是否开工建设	□否 ☑是: 项目主体已建成,并已运行多建成,并已运行多年,但未办理环保 手续,也未受到环 保处罚,此次环评 后将按照环评要求 进行部分整改	用地(用海) 面积(m²)	17476	
专项评价设置情 况	本项目火化机尾气及焚烧炉尾气中含有二噁英,项目 500m 剂 内存在环境保护目标(兰甲屯村、黑沟和南票矿区总医院) 因此本项目需要编制大气专项评价			
规划情况		无		
规划环境影响 评价情况	无			
规划及规划环境 影响评价符合性 分析	无			

1. 产业政策符合性分析

本项目属于 08080 殡葬服务项目,根据《产业结构调整指导目录(2019年本)》(2021年修订版),项目不属于"鼓励类"、"限制类"和"淘汰类",为"允许类"项目,因此建设项目符合相关法律法规和政策规定,符合国家现行的产业政策要求。

2. 选址合理性分析

本项目位于辽宁省葫芦岛市南票区兰甲屯乡兰甲屯村,厂区四周为林地,最近居民为厂界西南侧 40m 的兰甲屯村居民。本项目厂区为南北向狭长型厂区,厂区南部为停车场,主要污染源(火化间、焚烧间)均位于厂区北部,主要污染源距最近敏感目标兰甲屯村居民 300m,且本项目已运行多年,从未收到周边居民的投诉,本次环评期间企业开展了公众参与调查,调查周边居民共计 21人,调查结果显示,对本项目可能带来的环境影响态度,全部受调查人表示"可以接受",对本项目的建设总体态度均表示"支持",调查期间无人反对。

项目运营期以废气、废水、噪声影响为主,经有效治理后,废气、废水、噪声均可实现达标排放,不会对周边环境及敏感目标造成明显影响;能够满足评价区域环境功能区的要求。

项目总占地面积 17476m², 其中 3855m²批准用途为公用设施用地, 葫芦岛市自然资源局南票分局已提供的土地性质证明文件(见附件用地说明); 另有13621m²土地性质为集体,该部分土地正在办理公用设施用地手续。

项目与《殡仪馆建设标准》(建标 181-2017)选址要求符合性分析情况如下表:

名称 政策要求 本项目 符合性 项目总占地面积17476m²,其中 土地使用手续及土地 一、符合用地分类原 3855m², 批准用途为公用设施用 规划办理完成后,项 地,符合用地分类原则和规划管 目用地符合用地分类 则和规划管理、殡葬 选址 原则和规划管理、殡 管理条例以及国家现 理。另有13621m²土地性质现为集 与规 行有关标准的规定。 体用地, 该面积内土地使用手续 葬管理条例以及国家 划布 及土地规划正在办理中。 现行有关标准的规定 局 二、具备满足工程建 本项目为已建项目,工程地质条 设的工程地质条件和 符合 件和水文地质条件良好。 水文地质条件。

表 1 项目与《殡仪馆建设标准》符合性分析

三、殡仪馆宜建在当 地常年主导风向的下 风侧,并应有利于排 水和空气扩散。	南票区常年主导风向为SSW,本项目位于南票区常年主导风向的侧风向。	项目已建成,位于南 票区市常年主导风向 的侧风向
四、交通、给排水、 供电有保障。	本项目已运行多年,交通、给排 水、供电等设施均已健全	符合
五、考虑到殡葬工作的特殊性,尽量选择周边单位和居民较少、相对独立、产处理便利的地域,并处理好与周边单位及居民的关系,符合现行国家标准《火葬场卫生防护距离标准》	项目周边单位和居民较少、相对独立、交通便利;2017年3月23日,国家质量监督检验检疫总局、国家标准化管理委员会发布《中华人民共和国国家标准公告》(2017年第7号)通知,《火葬场卫生防护距离标准》GB18081不再强制执行	符合

综上所述,项目所在地交通方便,周围无文物古迹、风景名胜及自然保护 区等特殊保护目标,无集中式饮用水源地保护目标,项目选址可行。

3. 环境管理政策符合性分析

(1)本项目与《辽宁省"十四五"生态环境保护规划的通知》(辽政发办〔2022〕16号)的相符性分析

表 2 与《辽宁省"十四五"生态环境保护规划的通知》符合性分析

序号	规范内容	本项目情况	分析 结果	
	完善绿色发展材	几制		
	建立生态环境分区管控:强化"三线一单"生态环境分区管控的约束和政策引领,应用于相关专项票区重点管控区,项目的建设规划编制、产业政策制定、建设项目选址等方便,符合葫芦岛市"三线一单"生健全完善"三线一单"分区管控、规划环评审查和查环境分区管控单元中管控建设项目环评审批联动机制。			
2	健全完善宏观环境政策:出台高耗能、高排放建设项目环境管理制度,严格控制"两高"项目盲目 发展		符合	
二	统筹推荐区域绿色协	 协调发展		
1	辽宁沿海经济带持续推进行业深度治理。推进石化、化工、印染等产业技术升级,严控石化产业挥发性有机物(VOCs)污染,防范沿海石化行业环境风险		符合	
三三	加快绿色低碳转型升级			
	深入优化调整产业结构: 持续压减淘汰落后和过剩产能, 严格落实钢铁、水泥熟料、烧结砖瓦、 电解铝、炼化等行业产能置换要求	于钢铁、水泥熟料、烧结砖瓦、	符合	

2	加快优化调整能源结构,推行清洁能源替代,对以煤、石油焦、渣油、重油等为燃料的锅炉和工业炉窑,加快使用清洁低碳能源以及工厂余热、电力热力等进行替代,持续推进清洁取暖	本项目拆除原有燃煤供暖锅 炉,安装空气热能系统为馆区 供热。	符合
<u></u>	积极应对气候变化,控制	温室气体排放	
1	控制重点领域二氧化碳排放,以钢铁、水泥、电解铝、石化、化工、煤化工等行业为重点推进绿色制造		符合
2	控制非二氧化碳温室气体排放	本项目主要污染物为颗粒物, 氮氧化物、二氧化硫、二噁英 汞、氯化氢等,均处理达标后 排放	符合
<u> </u>	深入打好蓝天保卫战,提到	什环境空气质量	
1	完善区域大气污染综合治理体系,以沈阳、鞍山、 辽阳营口、锦州、葫芦岛为重点,以钢铁、有色、 化工、凌美等汗液为突破口,加大区域治理,降 低污染物排放	二氧化硫、氮氧化物、氯化氢	符合
$-\frac{1}{2}$	强化燃煤锅炉整治和散煤污染治理	本项目不涉及燃煤锅炉	符合
			1 1 4 H
1	坚持源头预防、分类管理, 分区施策, 严格农用地和建设用地环境风险管控	项目主要为遗体火化及祭祀 品焚烧,生产过程中产生的污	符合
2	强化地下水环境风险管控,加强地表水与地下水污染、土壤和地下水污染协同防治	染物主要为颗粒物、二氧化硫、氮氧化物、氯化氢、汞、二噁英等,均采取治理措施后处理后,达标排放,车间封闭地面硬化,不存在地下水和土壤污染途径	符合
8 - 7	(2)本项目与《辽宁省深入打好污染防治功 計)的相符性分析 表3 与《辽宁省深入打好污染防治攻坚		2022)
编号	分析内容 分析内容	本项目情况	析结果
1	加强生态环境分区管控。严格落实"三线一单"	证项目为殡葬服务项目,不属于钢铁、水泥、电解铝、话化、化工、煤化工等重点行业,不属于两高行业。	符合 符合
		控的要求。	
2	(二)深入打好蓝冠 实施大气减污降碳协同增效行动。推动重点行本		 符合
	L		

业落后产能退出,推进钢铁、焦化、有色金属 炉,安装空气热能系统为馆 行业技术升级。加快供热区域热网互联互通建 区供热。	
行业技术开级。加快供热区域热网互联互通建设,淘汰管网覆盖范围内的燃煤锅炉和散煤。 推进工业炉窑清洁能源替代,以菱镁、陶瓷等 行业为重点,开展涉气产业集群排查及分类治理。	
实施清洁取暖攻坚行动。充分发挥热电机组和 大型热源厂能力,推进燃煤锅炉关停整合。在 空气质量未达标的城市城中村、城乡结合部, 因地制宜推进供暖清洁化, 有序开展农村地 区散煤替代工作。到 2025年,城市建成区基 本淘汰35蒸吨/小时及以下燃煤锅炉。	符合
实施挥发性有机物污染治理达标行动。以石化、化工、涂装、医药、包装印刷和油品储运销等行业领域为重点,安全高效推进挥发性有机物,无组织达标排放;主要污染物为颗粒物、二氧化硫、氮氧化物、氯化氢、汞、二噁英、一氧化碳等,均采取治理措施后处理后,达标排放	符合
加强大气面源和噪声污染治理。强化施工、道 项目大气污染物均有组织排路、堆场、裸露地面等扬尘管控,推进低尘机 放;采用低噪声设备,利用 械化清扫作业,加大城市出入口、城乡结合部 墙体隔声降低噪声污染;食等城乡重要路段清扫保洁力度。加大餐饮油烟 堂油烟安装油烟净化器。	符合
(三)深入打好碧水保卫战	_
持续打好城市黑臭水体治理攻坚战。按照"控源截污、内源治理、生态修复、活水保质"的总体思路,实施地级及以上城市黑臭水体治理成果巩固提升等"两大行动",到2025年,县级城市建成区基本消除黑臭水体,新民、瓦房店、庄河市力争提前1年完成。实施地级及以上城市黑臭水体治理成果巩固提升行动。建立防止返黑返臭的长效机制,定期对已完成治理黑臭水体开展水质监测并向社会公布。加强巡河管理,对新增黑臭水体及返黑返臭水体纳入清单管理,加快整治并及时公示。持续开展黑臭水体整治专项督查。实施县级城市黑臭水体排查整治行动。全面开展黑臭水体排查,科学制定系统化整治方案。因地制宜对河湖岸线进行生态化改造,恢复和增强河湖水系的自净功能。2022年6月底前,县级城市政府完成建成区内黑臭水体排查并制定整治方案,统一公布黑臭水体清单及达标期限。	符合
(四)深入打好净土保卫战	
5 强化地下水污染协同防治。加强地表水与地下项目主要为遗体及祭祀品焚水污染、土壤与地下水污染、区域与场地地下烧,生产过程中产生的污染水污染协同防治。以省级化工园区、垃圾填埋物主要为颗粒物、二氧化硫、	符合

场、危险废物处置场为重点,持续开展地下水。氮氧化物、氯化氢、汞、二环境状况调查评估。划定地下水型饮用水水源。噁英等,均采取治理措施后补给区,分类制定保护方案。划定地下水污染处理后,达标排放,车间封防治重点区,强化污染风险管控。 闭,地面硬化,不存在地下水污染和土壤途径

(3) 与《辽宁省防沙治沙条例》(2009年8月1日实施)相符性分析

表 4 与《辽宁省防沙治沙条例》相符性分析

条例要求	本项目情况	符合性
第二十三条 在沙化土地范围内从事开发建设活动的,必须依法进行环境影响评价,提交环境影响报告。环境影响报告应当包括有关防沙治沙的内容。环境保护行政主管部门在审批环境影响报告时,应当就报告中有关防沙治沙的内容征求同级林业行政主管部门的意见。开发建设项目中的防沙治沙工程设施建设和生态保护措施的实施,必须与开发建设同步进行。林业、水利、环境保护等行政主管部门应当加强对开发建设项目的监督检查,对因防治措施不力造成土地沙化的,应当责令建设单位限期进行治理。对治理不合格的,有关部门不得进行竣工验收。	本项目位于辽宁省葫芦岛 市南票区兰甲屯乡兰甲屯 村,属于沙化范围内,正 在办理环境影响评价报 告。本项目施工期已经结 束,不涉及防沙治沙的要 求。	符合

(5) 与《2020年挥发性有机物治理攻坚方案》符合性分析

本项目与《2020 年挥发性有机物治理攻坚方案》(环大气〔2020〕33 号)符合性分析见下表。

表 5 与《2020年挥发性有机物治理攻坚方案》相符性分析

文件要求	本项目情况	符合 性
五、强化油品储运销监管,实现减污降耗均	曾效	
加大汽油、石脑油、煤油以及原油等油品储运销全过程VOCs 排放控制,在保障安全的前提下,重点推进储油库、油罐车、 加油站油气回收治理,加大油气排放监管力度,并要求企业建 立日查、自检、年检和维保制度。储油库应采用底部装油方式, 装油时产生的油气应进行密闭收集和回收处理,处理装置出入 口应安装气体流量传感器。7月15日前,对储油库油气密闭收 集系统进行一次检测,任何泄漏点排放的油气体积分数浓度不 应超过0.05%。运输汽油的油罐汽车应具备底部装卸油系统和 油气回收系统,装油时能够将汽车油罐内排出的油气密闭输入 储油库回收系统,往返运输过程中能够保证汽油和油气不泄 漏,卸油时能够将产生的油气回收到汽车的油罐内,除必要应 急维修外,不应因操作、维修和管理等方面的原因发生油气泄 漏;运输汽油的铁路罐车要采取相应措施,减少装油、卸油和 运输过程的油气排放。加油站卸油、储油和加油时排放的油气, 应采用以密闭收集为基础的油气回收方法进行控制,卸油应采	本的规项式对储日年度储进与油块油目油火油查检,油并罐化罐、和并罐检加油产物,油产量的增定密测。	符合

用浸没式,埋地油罐应采用电子式液位计进行液位测量,除必要的维修外不得进行人工量油,加油产生的油气应采用真空辅助方式密闭收集,加油站正常运行时,地下罐应急排空管手动阀门在非必要时应关闭并铅封,应急开启后应及时报告当地生态环境部门,做好台账记录。

(6) 与《重点行业二噁英污染防治技术政策》符合性分析

本项目与《重点行业二噁英污染防治技术政策》(环境保护部公告 2015 年第 90 号)符合性分析见下表。

表 6 与《重点行业二噁英污染防治技术政策》相符性分析

文件要求	本项目情况	符合 性
二、源头削减		
(十)遗体火化应采用再燃式火化机;鼓励采用 多级燃烧等充分燃烧技术;鼓励使用天然气、煤 气、液化石油气等气体燃料;减少火化随葬品中 聚氯乙烯等成分。	本项目火化机设有二燃室, 从源头削减二噁英的产生	符合
三、过程控制		
(十六)火化机应设有再燃室,在遗体入炉前再燃室的温度不低于850℃,烟气的停留时间应在2.0秒以上,再燃室出口烟气的氧气含量不低于8%(干烟气),并控制助燃空气的风量和供风方式,提高烟气湍流度,确保遗体及其随葬品充分燃烧。遗物祭品焚烧应配置带有烟气处理设施的专用焚烧系统,避免无组织排放。	本项目二燃室温度850-1000 ℃,烟气停留时间不小于2 秒钟,并控制助燃空气的风量和供风方式,保证二燃室 出口烟气的氧气含量不低于8%(干烟气),确保遗体及其随葬品充分燃烧。 遗物祭品焚烧采用带有处理设施的专用焚烧炉。	符合
四、末端治理		
(十九)根据铁矿石烧结、电弧炉炼钢、再生有色金属生产、废弃物焚烧和遗体火化行业的工艺特点,应采用高效除尘技术等协同处理烟气中的二噁英。铁矿石烧结机头烟气宜优先采用电袋复合除尘技术,机尾烟气宜采用高效袋式除尘技术。电弧炉炼钢过程中产生的烟气宜采用"炉内排烟+大密闭罩+屋顶罩"方式捕集,并优先采用高效袋式除尘器净化。再生有色金属生产、废弃物焚烧和遗体火化过程中产生的烟气宜采用高效袋式除尘技术和活性炭喷射等技术进行处理。	项目火化机废气采用"急冷装置+干法脱硫脱酸系统+布袋除尘+活性炭吸附"工艺处置。	符合
(二十三)废弃物焚烧烟气净化设施产生的含二 噁英飞灰、特定有机氯化工产品生产过程中产生 的含二噁英废物应按照国家相关规定进行无害化 处置。应对遗体火化和遗物祭品焚烧烟气净化设 施捕集的飞灰进行妥善处置。	项目烟气净化设施捕集的 飞灰存于危废暂存间内,定 期交资质单位无害化处理	符合

4. "三线一单"符合性分析

根据环保部发布的《关于以改善环境质量为核心加强环境影响评价管理的 (以下简称《通知》),《通知》要求切实加强环境影响评价管理,落 通知》 实"生态保护红线、环境质量底线、资源利用上线和环境准入负面清单"约束, 建立项目环评审批与规划环评、现有项目环境管理、区域环境质量联动机制, 更好地发挥环评制度从源头防范环境污染和生态破坏的作用,加快推进改善环 境质量。项目与"三线一单"相符性见下表。

符合性 内容 项目分析 根据《葫芦岛市生态保护红线划定方案》,本项目不在葫芦岛市划 生态保 定的生态保护红线范围内,符合基本划定完成的葫芦岛市生态保护 符合 护红线 红线划定方案要求。 本项目为殡葬服务项目,用水取自地下水,营运过程中消耗一定量 资源利 的柴油、电源、水资源等资源消耗、资源消耗量相对区域资源利用 符合 用上线 总量较少,符合资源利用上限要求。 项目所在地属于环境空气质量达标区。火化机、焚烧炉和十二生肖 祭祀炉产生的废气分别经"急冷装置+干法脱硫脱酸系统+布袋除尘+ 环境质 活性炭吸附"(火化机2套、焚烧炉1套、十二生肖祭祀炉1套)工艺 符合 量底线 处理达标后有组织排放:生活污水排入旱厕后,定期清掏堆肥:项 目污染物不会造成区域环境质量下降,整体对区域内环境影响较小, 环境质量可以保持在现有水平,符合环境质量底线要求。 本项目位于辽宁省葫芦岛市南票区兰甲屯乡兰甲屯村黑沟, 对照葫 芦岛市生态环境准入清单,项目所在环境管控单元类别为:重点管 负面清 控区;环境管控单元编码为: ZH21140420019。对照《葫芦岛市人民 符合 单 号)中附件3: 葫芦岛市生态环境准入清单(2021年版),项目不在 负面清单内。

"三线一单"相符性分析 表 7

综上所述,本项目的建设符合"三线一单"的要求。

5、葫芦岛市"三线一单"生态环境分区管控单元

根据葫芦岛市"三线一单"管控单元查询部门出具的"三线一单"管控单 元查询申请表查询结果可知,项目所在区域属于葫芦岛市南票区重点管控区(环 境管控单元编码: ZH21140420019)。

	٠,	土心 1 30 7 三 日 1 7 6 7	1 11 12/1/1	
管控单元编码		环境管控单元名和	ĸ	
ZH21140420019		葫芦岛市南票区重点管	 控区	
序 53	类型	管控要求	本项目情况	符 合

表 8 "三线一单" 生态环境分区管控单元符合性分析

号				性
1	空间布局约束	严格规范"两高"项目行政审批行为,强化"两高"项目能耗双控管理,推进"两高"行业减污降碳协同控制。 严格执行《葫芦岛市水污染防治工作方案》 有关规定,加快城镇污水处理设施建设与 改造。	1.本项目为殡葬服 务项目,不属于 "两高"项目。 2.项目无生产废 水,生活污水进入 旱厕,定期清掏堆 肥。	符合
2	污染物排 放管控	城镇污水处理厂应全面达到一级A排放标准,现有城镇污水处理设施,要因地制宜进行改造。 全面加强配套管网建设,强化城中村、老旧城区和城乡结合部污水截流、收集、纳管工作。	1、目前项目所在 区域尚无污水收 集管网,本项目无 生产废水,生活污 水进入旱厕,定期 清掏堆肥	符合
3	环境风险 防控	建立全市水资源、水环境承载能力监测评价体系。 建立河流河段、入河排污口、重点监控断面全覆盖的市、县(市)区两级"河长制""段长制"管理体系,削减污染负荷,确保水体水质达到目标要求。		符合
4	资源开发 效率要求	/	/	符合

综上所述,本项目的建设符合葫芦岛市"三线一单"生态环境分区管控单 元中管控的要求。

二、建设项目工程分析

1.建设概况

葫芦岛市南票区殡仪馆始建于1985年,现有占地面积17476m²,总建筑面积3000m²,年火化遗体数量最大可达2000具,是南票区唯一一家负责提供遗体接运、暂存、火化、骨灰存放和公益性公墓生态安葬等殡葬服务机构。由于历史原因,葫芦岛市南票区殡仪馆一直未办理环保手续,本次补办环评,根据《建设项目环境影响评价分类管理名录(2021年版)》,本项目为"五十、社会事业和服务业——122.殡仪馆、陵园、公墓"中"殡仪馆"需要编制报告表,项目主要建设项目组成情况见下表。

表 9 建设项目组成一览表

		项目名称	现有建设内容	改造内容
		火化间	1层,建筑面积 488m²,砖混结构,室内设高级拣灰燃油火化机 3台,设置 1个 3m³燃油暂存罐,暂存罐设置在 2m 高处	储油罐下方拟设 置围堰
建设力		告别厅	1 层,建筑面积 200m², 砖混结构,供家属为逝者悼念、告别;	不变
内容	.	焚烧间	1层,建筑面积 160m²,砖混结构,设有遗物焚烧炉 1座,十二生肖祭祀炉1套,用于祭祀物品的焚烧;	不变
	主体工程	1#冷藏间	1层,建筑面积 128m²,砖混结构,内置单体冷藏棺 3个,组合冷藏柜 12个用于遗体冷藏和遗容瞻仰;制冷形式为风冷式/电冷式,采用 R404A 型制冷剂	不变
	11年	2#冷藏间	1层,建筑面积 160m²,砖混结构,内置单体冷藏棺5个,用于遗体冷藏;制冷形式为风冷式/电冷式,采用 R404A 型制冷剂	不变
		骨灰暂存间	1 层,建筑面积 320m², 砖混结构,用于临时存放骨灰;	不变
		守灵间	1 层,建筑面积 160m²,砖混结构,用于逝者悼念和 遗容整理	不变
		业务室	1层,建筑面积 240m², 砖混结构, 主要为业务登记;	不变
	辅助	办公休息区	2 层,建筑面积 320m², 砖混结构, 一层为休息间, 用于工作人员临时休息; 二层为办公室	不变
	功工	食堂	1层, 砖混结构, 建筑面积: 104m²,	不变
	程	锅炉房	1层,砖混结构,建筑面积 45m², 现有一台 0.35MW 燃煤热水锅炉,为厂区供暖。	拟拆除燃煤热水 锅炉,安装空气 源热能系统

		1#旱厕	1层,砖混结构,建筑	范面积: 24m²;	不变
		2#旱厕	1层,建筑面积 45m²,	砖混结构;	不变
		库房	1层,砖混结构,建筑 房和1一个公用通廊;	[面积 104m²;包含 2 个独立库	利用现有库房, 改造其中1间库
储 运 工	危	废暂存间		/	房为危废暂存 间,改造面积 50m ² ;
程		1#车库	1层,砖混结	构,建筑面积 128m²;	不变
		2#车库	1层,砖混结	构,建筑面积 80m²;	不变
		供电		共给,馆内点源设置双回路, 『200kVA 变压器各 1 台	不变
公用		给水	本项目用水来自地下2	k	需办理取水证明 后方可使用
工		排水	生活污水排入旱厕,氣	定期清掏堆肥	不变
程		供热	馆区供热由空气源热能系统提供		拆除燃煤热水锅 炉,安装空气源 热能系统
		火化机 尾气	砖混结构。火化机尾	处理间 1 座,建筑面积 96m², 气通过 2 套"急冷装置+干法脱 上+活性炭吸附"尾气治理系统 排气筒 DA001 排放	不变
	:	焚烧炉 尾气+	项目设置焚烧炉尾 气处理间1座,建筑 面积88m²,砖混结	焚烧废气通过1套"急冷装置+干法脱硫脱酸系统+布袋除尘+活性炭吸附"尾气治理系统处理后,统一经15m排气筒DA002排放;	不变
环 保工		理 2 生	尾气治理系统和1套 12生肖祭祀炉尾气	12 生肖祭祀炉尾气通过 1 套 "急冷装置+干法脱硫脱酸系统+布袋除尘+活性炭吸附"尾气治理系统处理后,统一经 15m 排气筒 DA003 排放	不变
程		食堂油 烟	食堂油烟采用油烟净化器处理后,经排气烟道引至 高于房顶排放		新增1台油烟净 化器
		噪声 治理	选用低噪声设备,隔阂	^古 、减振、距离衰减等。	不变
			骨灰由逝者家属装入针	骨灰盒带走,葬入墓地	不变
		固废	祭品焚烧灰渣焚烧灰汽 掏后直接送至城市垃圾	查暂存于焚烧炉底部,定期清 及填埋场	不变
		治理	50m², 砖混结构; 火理系统产生的废活性数	1 间危废暂存间,建筑面积 化机治理系统及遗物焚烧炉治 炭、除尘器回收粉尘、脱硫渣、 后,暂存于危废暂存间,定期	新建

		交有资质单位处置	
		生活垃圾收集至垃圾桶,定期由环卫部门处置	不变
	地下水	储油罐下方围堰防渗、围堰外设置导流槽连接车间 内设置的防渗地坑,危废暂存间地下防渗措施	已建

2. 主要设备设施

本项目主要生产单元、主要工艺及生产设施见下表。

表 10 主要生产单元、主要工艺及生产设施参数表

主要	主要生产单 主要工艺		生产设施	数量 (台/ 套)	设施参数	备注
مل،	.化单元	火化工艺	火化机	3	规格型号: 航泰SL-DⅡB型主燃 温度: 1200℃	已建
	.化平儿	· 火化工乙	鼓风机	3	单台风量: 1050m³/h; 全压: 10000Pa;	已建
		焚烧工艺	焚烧炉	1	YFYW-V型遗物焚烧炉	已建
祭	祀单元	火炕上乙	焚烧炉	1	十二生肖祭祀炉	已建
		告别厅	音响	2	/	已建
\ <u>\</u>	藏单元	冷藏工艺	冷藏棺	8	规格型号: 2150×890×970mm; 制冷形式为风冷式/电冷式,采 用R404A型制冷剂 ^a ,符合	已建
	<i>が</i> 以一一プロ	14顺江二	组合冷藏柜	12	规格型号: 2520×1600×1700mm 制冷形式为风冷式/电冷式, 采 用R404A型制冷剂	己建
储	运单元 /		储油罐	1	容积: 3m³; 最大存储量2.4m³; 油罐下方设置围堰: 2m×4m× 0.4m	已建
辅	助单元	空气热能	空气热能系统	1	出水温度: 5~20℃/45~70℃; 制热范围: 27~416kw	新建
		强风冷却	急冷装置	2	温度: 300—180℃	已建
			石灰喷射装置	2	脱硫剂: CaO; 钙硫比: 2.5;	已建
	火化机	干法脱硫	鼓风机	2	单台风量: 1000m³/h; 全压: 3200Pa;	已建
废	尾气治 理单元	除尘工艺	脉冲布袋除尘 器	2	过滤面积: 120m²;	已建
气治		吸附工艺	活性炭装置	2	活性炭单台装填量: 2t;	已建
理		/	引风机	2	单台风量: 4800m³/h; 全压: 3200Pa;	已建
	焚烧炉	强风冷却	急冷装置	1	温度: 900—250℃	已建
	炎烧炉 尾气治		反应装置	1	脱硫剂: CaO; 钙硫比: 12.5;	已建
	理单元	干法脱硫	鼓风机	2	单台风量: 1000m³/h; 全压: 3200Pa;	已建

	除尘工艺	脉冲布袋除尘 器	1	过滤面积: 288m²;	已建
	吸附工艺	活性炭装置	1	活性炭单台装填量: 4t;	已建
	/	风机	1	单台风量: 6400m³/h; 全压: 3200Pa;	已建
	强风冷却	急冷装置	1	温度: 900—250℃	已建
		反应装置	1	脱硫剂: CaO; 钙硫比: 12.5;	已建
12生肖 祭祀炉	. •	鼓风机	2	单台风量: 1000m³/h; 全压: 3200Pa;	已建
宗化が 尾气治 理単元	除尘工艺	脉冲布袋除尘 器	1	过滤面积: 288m²;	已建
生牛儿「	吸附工艺	活性炭装置	1	活性炭单台装填量: 4t;	已建
	/	风机	1	单台风量: 6400m³/h; 全压: 3200Pa;	已建
食堂油 烟	/	油烟净化器	1	处理烟气量: 4000m³/h; 净化效率: >80%	新建

注a: R404A是一种不含氯的非共沸混合制冷剂,常温常压下为无色气体,贮存在钢瓶内是被压缩的液化气体。其ODP为0,因此R404A是不破坏大气臭氧层的环保制冷剂。

(1) 火化机性能参数:

本项目火化机为同一类型、火化能力一致、设备参数如下。

燃料要求: -30#~10#轻柴油。

炉膛工作压力范围: -5~-30Pa。

主燃室工作温度: 800℃~900℃。

二燃室工作温度: 850℃~1000℃。

主炉膛尺寸: 长3600mm×宽2400mm×高3300mm。

连续火化时间: 35~45分钟/具。

平均火化耗油要求: 8~20L/具。

(2) 遗物焚烧炉性能参数:

焚烧处理能力: 200-350kg/h。

燃料要求: -30#~0#轻柴油。

燃烧室的工作温度: 600-850℃。

炉膛压力: -5 ~-90Pa。

进料口尺寸: 长2200mm×高816mm。

(3) 十二生肖焚烧炉性能参数

处理能力: 大于180kg/h。

燃料类型: 自行燃烧。

焚烧物:纸质祭品。

炉膛容积:不小于2立方米。

总占地面积:不大于20m²。

3. 原、辅材料消耗

项目主要原、辅材料消耗情况见下表。

表 11 本项目原辅材料及能源耗量一览表

序号	名称	消耗量	单位	储存位置	最大储存量						
	原辅料										
1	消毒液	1000	L/a	储存于库房	瓶装外购,每瓶 500ml;最大储存量50 瓶						
2	氧化钙	2	t/a	储存干法脱硫脱酸 塔内	0.5t						
3	活性炭	3.9	t/a	1次性更担	英不做储存						
4	布袋	0.36	t/3a	每三年更换1次,身	更换前采购不做储存						
			自								
5	0#柴油	26	t/a	火化车间柴油储罐 2t							
6	水	513.7	m³/a	来自地下水							
7	电	105	万kWh	来自国家电网							

本项目柴油的产品检验信息见下表。

表 12 柴油成分及含量表

 序号			0##	·
冲 写		石	实测	标准限值
1	7	流含量(mg/kg)	4.8	<10
2	铜片	腐蚀(50℃,3h)/级	1a	<1
3	运动黏	i度(20℃)(mm²/s)	3.6	3.0~8.0
4		冷滤点/℃	-7	<4
5		闪点(闭口)/℃	66	>60
6		十六烷指数	50	>46
7		50%回收温度//℃	246	<300
8	馏程	90%回收温度//℃	319	<355
9		95%回收温度//℃	338	<365
10	杨	注准密度(kg/m³)	823	810~850

项目燃油采用0#柴油,消毒液为84消毒液(以次氯酸钠为主要成分的含氯消毒剂,有效氯含量5.5%~6.5%。)主要原辅材料理化性质见表12、表13:

表 13 柴油的理化性质表

品/	—— 名			柴泪	1	别名	油渣	
	/1.	CAS 등	<u>L</u>		68334-30-5	沸点	170-390℃	
理位性					外观性状: 有	色透明液位	本。	
生力	灰		;	溶解	性:难溶于水,易泽	容于醇和其		
稳; 性; 危! 性	和 险 比	危险性: 油是电的 摩擦会产 燃烧产物 醛类和不 的杂环和	柴不生: 完善	正质很稳定。 适于易燃物,其蒸气在 60℃时遇明火会燃烧,燃烧放出大量热;柴 一样体,在运输、灌装过程中,油分子之间、柴油与其他物质之间的 型,产生电火花。 燃机燃烧柴油所产生的废气含有氮氧化物、一氧化碳、二氧化碳、 燃烧时的大量黑烟。黑烟中有未经燃烧的油雾、碳粒,一些高沸点 到质,并有些致癌物如 3.4-苯并芘,可造成污染。				
毒					、呼吸道吸入。			
学							可致吸入性肺炎,皮肤接触柴	
	+	畑リ蚁接			可引起眼、鼻刺激组织,	- · · · ·	和头涌。 上滤式防毒面具,紧急事态抢救	
安全	소	呼吸系统	防护	时应	佩戴空气呼吸器;	避免口腔和	1皮肤与柴油接触;维修柴油机 位置,尽量减少柴油蒸气吸入。	
防力		眼睛防	护	戴化学安全防护眼镜				
措施		身体防护		穿工作服(防腐材料制作)				
		手防护	i	戴橡胶耐油手套				
		其他			工作后,淋漓	浴更衣,係	· 持良好的卫生习惯	
应流		急救措施		皮肤接触:立即脱掉污染的衣服,用肥皂和清水冲洗皮肤,出现皮炎要就医; 眼睛接触:立即翻开上下眼睑,用流动水或生理盐水冲洗,就医;吸入:迅速撤离现场至空气清新处,保持呼吸道顺畅,如呼吸困难,给输氧,如呼吸停止,立即进行人工呼吸,就医;食入:误服柴油者可饮牛奶,尽快彻底洗胃,要送医院就医				
措施	_	泄漏措施		首先切断泄漏油罐附近的所有电源,熄灭油附近的所有明火,隔 离泄漏污染区,严禁携带火种靠近漏油区;在回收油品时,严禁 使用铁制工具,以免发生撞击摩擦起火;待油迹清除后,确认无 火灾隐患,方可开始继续进行;漏油处必须进行维修,确认无漏 油方可开始继续使用。				
		消防方	法		雾状水、泡	· 干粉	、二氧化碳、砂土	
					表 14 次氯酸钠的3	里化性质表	ŧ	
标			中文	文名:	次氯酸钠		UN 号: 1791	
识		英文名			hypochlorite solution	1	危规编号: 83501	
			分	子式	: NaCIO		CAS 号: 7681-52-9	
理		观与性状		1			氢气的气味	
化		点(℃)	-6	711 112 1(1)			相对密度(空气=1) 无资料	
性	沸	点 (℃)	102	2.2	饱和蒸气压(1	kPa)	无资料	

质	溶解性		溶于水				
	侵入途径	吸入、食入、经皮吸收。					
毒	毒性	急·	急性毒性: LD50:850Cmg/kg(小鼠经口)				
性 及 健	健康危害	经常用手接触本品的工人,手掌大量出汗,指甲变薄,毛发脱落。本 品有致敏作用。 本品放出的游离氯有可能引起中毒。					
康危害	急救方法	议应急处理人 员 泄漏物。尽可能切 料吸收。大量泄漏	戴自给正压式呼吸器,]断泄漏 源。小量泄; i:构筑围堤或挖坑收容	并进行隔离,严格限制出入。建 穿防酸碱工作服。不要直接接触 属:用砂土、蛭石或其它惰性材 系。用泡沫覆盖,降低蒸汽灾害。 可收或运至废物处理场所处置			
	闪点(℃)	无意义	燃烧分解物	氯化物。			
燃	禁忌物	碱类					
烧爆炸	危险特性	本品不燃,受高热	热分解产生有毒的腐蚀 灼伤,具致每	由性烟气,具腐蚀性,可致人体 效性。			
作 た た 性	储运条件 与泄漏处理	储存于阴凉、通风的仓间内,远离火种、热源。库温不宜超过30℃。 应与碱类分开存放,切忌混储。储区应备有泄漏应急处理设备和合适 的收容材料					
<u>I</u> II.	灭火方法	灭火方	法:采用雾状水、二	氧化碳、砂土灭火。			

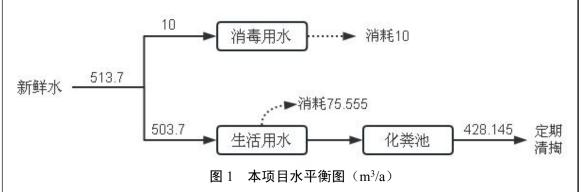
4. 本项目水平衡

本项目用水包括消毒用水和职工生活用水等,用水来自市政供水管网。

(1) 消毒用水

根据企业实际运行情况,馆区采用84消毒液消毒,每100ml水加10ml84消毒液为其配制,84消毒液用量为1000L/a,则84消毒液配置所需用水量为10m³/a,消毒用水随消毒液蒸发损耗。

(2) 生活用排水


本项目员工 23 人,年工作日 365 天,职工生活用水取《辽宁省行业用水定额》 (DB21/T1237-2020) 中表 177 农村居民生活用水定额 60L/人 • D,则职工日常生活用水量约为 503.7m³/a;生活污水产生量以用水量的 85%计,约为 428.145m³/a,生活污水排入旱厕后,定期清掏堆肥。

综上所述,本项目用水量为 513.7m³/a,废水排放量为 428.145m³/a。本项目水平衡表见下表,水平衡图见图 1。

表 15 本项目水平衡表

项目	入方 m³/a	出力	j m ³ /a	排放去向
	新鲜水	损耗	排水	排放去问

消毒用水	10	10	0	消毒用水随消毒液蒸发损耗
生活用水	503.7	75.555	428.145	生活污水排入旱厕后,定期
总计	513.7	85.555	428.145	清掏堆肥
合计	513.7	513.7		

5. 劳动定员及工作制度

劳动定员:本项目劳动定员23人。

工作制度: 年工作日365天,每天工作时间为8小时。遗体火化一次约43.2分钟,年最大火化量2000具,约1440小时,单台火化机运行时间约720小时;焚烧炉单次焚烧约21.6分钟,年最大焚烧次数约2000次,共计运行约720小时。

6. 总平面布置

本项目总体用地分为办公辅助区、殡仪区、存放区和祭祀区。馆区设置两个个入口,分别可直达办公区和存放区、殡仪区、祭祀区。馆区南侧为办公辅助区,自成一区,既方便整个场馆的管理工作,又保证殡仪馆内部人员办公不受干扰独立运行。殡仪区位于馆区中部,北侧为祭祀区和存放区。

1.施工期

主要工艺流程简述:

本项目为已建项目,施工工序主要针对需要整改部分进行施工整改,施工内容包括:增设油烟净化器;拆除原有燃煤锅炉,新增空气热能系统;利用原有库管改造危废暂存间1座;施工工序简单,周期短,施工期间有少量废气、噪声和固废产生。

2. 运营期

主要工艺流程简述:

本项目已建项目,遗体火化能力 2000 具/年,具体工艺流程如下:

(1) 业务登记

业务登记,确定服务项目一家属办理手续一下派殡仪车—接运遗体—遗体接入殡仪馆,对于无法立即进行火化的遗体,需进行冰柜冷藏停放,停放温度为-5℃,停放时间最长不超过3天。

(2) 事务办理, 悼念

布置告别厅—从冰棺中取出遗体—致悼词—遗体告别—送至火化间。

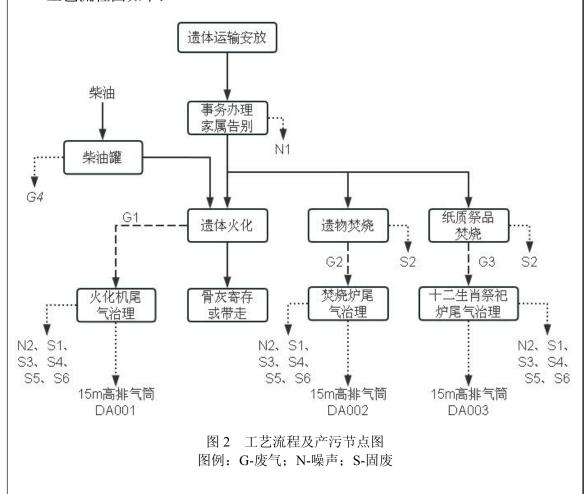
(3)遗体火化

遗体运至火化间—遗体进入火化炉—火化完成—家属收拣骨灰。

燃油式高档拣灰火化机由台车、主燃室、二燃室、燃烧器、烟道、风机、引射装置和烟囱组成。火化机以柴油作为原料,将尸体在燃烧室里充分燃烧氧化分解,主燃室温度 800-900℃,再燃室温度 850-1000℃,烟气停留时间不小于 2 秒钟。该火化机的主要特点是利用二次燃烧使有毒有害物质燃烧得比较充分,以充分氧化分解产生的污染物,从而达到去除烟尘、恶臭气体的目的。项目储油罐为火化车间中部区域,储油罐距地面高约 2m,最大储存量 2.4m³,下方地面设置围堰,围堰尺寸为 2m×4m×0.4m,围堰及围堰内地面做防渗处理。

火化间北侧设置火化机尾气治理车间,项目三台火化机采取两用一备,对应

设置两套废气处理设施,火化机尾气采用"急冷装置+干法脱硫脱酸系统+布袋除尘+活性炭吸附"工艺处理后,废气统一经 15m 高排气筒 DA001#排出。


(4) 遗物焚烧及祭祀用品(纸质贡品)处理

项目建设一套遗物焚烧炉及一套十二生肖祭祀焚烧炉,家属至焚烧区焚烧逝者遗物,焚烧尾气采用"急冷装置+干法脱硫脱酸系统+布袋除尘+活性炭吸附"工艺处理后,经 15m 高排气筒 DA002#排放。十二生肖祭祀焚烧炉尾气采用"急冷装置+干法脱硫脱酸系统+布袋除尘+活性炭吸附"工艺处理后,经 15m 高排气筒 DA003#排放。

(5) 骨灰处置

火化后骨灰可选择安葬、寄存或带走。

工艺流程图如下:

2.产排污环节

本项目污染工序及产污节点汇总见下表。

表 16 本项目主要污染因子及排污节点

 类 别	污染物 种类	产污	节点	主要污染因子	处理方式及排放去向	
		G1	火化机	烟尘、SO ₂ 、NOx、 CO、HCl、汞、二 噁英、烟气黑度	采用"急冷装置+干法脱硫脱酸系统+布袋除尘+活性炭吸附器"工艺处理后,经15m高排气筒 DA001 排放	
	废气	G2	遗物焚烧炉	烟尘、SO ₂ 、NOx、 CO、HCl、二噁英、 烟气黑度	采用"急冷装置+干法脱硫脱酸系统+布袋除尘+活性炭吸附器"工艺处理后,经15m高排气筒 DA002 排放	
		G3	十二生肖祭祀焚 烧炉	烟尘、SO ₂ 、NOx、 CO、HCl、二噁英、 烟气黑度	采用"急冷装置+干法脱硫脱酸系统+布袋除尘+活性炭吸附器"工艺处理后,经15m高排气筒 DA003排放	
		G4	储油罐	非甲烷总烃	无组织排放	
运		G5	食堂	油烟	采用油烟净化器处理后,经排 烟井排放	
一营	噪声	N1	灵堂音响	- (1)	采用低噪音机械;墙体隔声;	
期		N2	配套风机	Leq (A)		
773	一般固度	S1	火化机	火化骨灰	由各逝者家属装入骨灰盒带 走,葬入墓地	
		S2	焚烧炉+十二生 肖祭祀炉	焚烧灰渣	祭品焚烧灰渣焚烧灰渣暂存 于焚烧炉底部,定期清掏后直 接送至城市垃圾填埋场	
	危险废	S3	尾气处理设备	废活性炭		
	旭	S4	尾气处理设备	废布袋		
	123	S5	尾气处理设备	除尘器截留的灰 尘、	分类暂存于危废暂存间内,定 期交资质单位无害化处理	
		S6	尾气处理设备	脱硫渣		
		S7	火化机检修	废耐火材料		
	生活垃 圾	S8	员工生活	生活垃圾	收集至垃圾桶,定期由环卫部 门处置	
	废水	W1	生活污水	COD、氨氮、总磷、 总氮	排入旱厕后,清掏堆肥	

1、项目现状情况:

葫芦岛市南票区殡仪馆位于辽宁省葫芦岛市南票区兰甲屯乡兰甲屯村,始建于1985年,2014年火化机安装了火化机尾气处理系统(急冷装置+干法脱硫脱酸系统+布袋除尘);2021年遗物焚烧炉和十二生肖祭祀炉分别安装了尾气处理系统,遗物焚烧炉尾气处理系统(急冷装置+干法脱硫脱酸系统+布袋除尘),十二生肖祭祀炉尾气处理系统(急冷装置+干法脱硫脱酸系统+布袋除尘);2023年火化机尾气处理系统和遗物焚烧炉尾气处理系统分别安装活性炭吸附装置。

2、与本项目有关的原有污染情况

本项目污染情况主要为生产过程产生的废气、废水及固体废物、噪声(该部分具体内容见本报告工程分析章节)。根据现场踏勘情况,现有工程主要存在以下环境问题:

- (1) 食堂油烟未安装油烟净化器;
- (2)罐区供热采用0.35MW燃煤热水锅炉,燃煤堆放于锅炉房东侧空地;
- (3) 馆区内未设置危废暂存间。

对本项目提出如下整改要求:

- (1) 食堂油烟增设油烟净化器1台,净化效率不低于60%;
- (2) 拆除原有燃煤锅炉,新增空气热能系统,用于馆区供热;
- (3) 增设危废暂存间1座。

区域环境质量现状

三、区域环境质量现状、环境保护目标及评价标准

1.环境空气质量现状

(1) 基本污染物环境空气质量现状

根据《环境影响评价技术导则 大气环境》(HJ/2.2-2018),数据来源要求 优先采用评价范围内国家或地方环境空气质量监测网中评价基准年连续1年的监 测数据,或采用生态环境主管部门公开发布的环境空气质量现状数据。

本项目评价范围内常规污染物SO₂、NO₂、CO、PM₁₀、PM_{2.5}和O₃引用《葫芦岛市生态环境质量通报(2022年度)》中的数据,引用数据见下表。

污染物	年评价指标	现状浓度 (μg/m³)	标准值(μ g/m³)	占标率%	达标情况
SO ₂	年均值	18	60	30.00	达标
NO_2	年均值	27	40	67. 50	达标
PM_{10}	年均值	55	70	78. 57	达标
PM _{2.5}	年均值	33	35	94. 29	达标
CO	24 小时平均第 95 百分位数	1400	4000	35. 00	达标
03	8 小时平均第 90 百分位数	154	160	96. 25	达标

表 17 区域空气质量现状评价表

根据表14所示,评价区域环境空气质量现状中PM₁₀、PM_{2.5}、SO₂、NO₂年均值,CO 24小时均值、O₃ 8小时均值均满足《环境空气质量标准》(GB3095-2012)及其修改单(生态环境部2018年29号)中的二级标准要求。因此,判定本项目所在区域属于达标区。

(2) 其他污染物环境空气质量现状监测

根据项目特点,于2023年4月21日-4月28日对HC1、Hg、二噁英进行了补充监测, 2023年8月2日-8月8日再次选取非甲烷总烃作为补充监测因子。参照《环境影响评价技术导则 大气环境》(HJ2. 2-2018)和《环境二噁英类监测技术规范》(HJ916-2017),在馆区下风向1m处设置一个监测点,其中HC1、Hg、NMHC监测7d,考虑到项目所在区域内除本项目无明显二噁英类排放源,二噁英类监测频次为3d。

①监测布点及监测项目

本项目补充监测点位基本情况见下表。

表 18 其他污染物补充监测点位基本情况

监测	监测点	坐标/m			监测频次	相对	相对
点位 名称	X	Y	监测因子	监测日期		厂址 方位	厂界 距离
	310252	4556087	HCl、Hg、 二噁英	2023. 4. 21 -4. 28	二噁英监测 3 天, 监测日均值; HCl 监测 7 天, 监测小 时值; Hg 监测 7 天, 监测日均值	NE	1m
			非甲烷总 烃	2023.8.2-8.8	监测7天,监测小 时值	NE	1m

②评价结果

评价结果见下表。

表 19 环境空气质量现状评价结果

点位名	监测点坐标/m) = 34 dL	平均时	评价	监测浓度范围	最大浓度占	超	达标
称	X	Y	污染物	间	标准 μg/m³	11 or /m ³	标率/%	标 率%	情况
厂址 下风 向处	310252	4556087	HC1	小时值	50	0.05L	-	0	达标
			Hg	日均值	0. 1	0.003L	ı	0	达标
			二噁英 pgTEQ/Nm³	日均值	1. 2	0. 0069-0. 012	0. 575-1	0	达标
			非甲烷总 烃	小时值	2000	1010-1950	50. 5-97. 5	0	达标

检测结果小于检出限报检出限值加"L"。

由表 16 可知,项目所在区域特征污染物 HCI 小时值满足《环境影响评价技术导则 大气环境》(HJ2. 2-2018)中附录 D 限值要求; Hg 日均值满足《环境空气质量标准》(GB3095-2012)附录 A 中年均浓度换算的日均值; 二噁英日均值满足日本环境厅中央环境审议会制定的环境标准中的二噁英年均浓度换算的日均值; 非甲烷总烃满足小时值满足《大气污染物综合排放标准》(GB16297-1996)(详解)中标准要求。

2.声环境质量现状

(1) 监测项目:

等效连续 A 声级。

(2) 监测点位:

项目厂界外南侧兰甲屯村居民住宅处,共设1个监测点位。

(3) 监测频次:

监测时间: 2023年6月2日。

监测频率:监测1天,兰甲屯村居民住宅处昼间监测一次。

(4) 监测结果见下表。

表 20 声环境质量监测结果

dB (A)

采样点位	检测结果
兰甲屯村居民住宅	41
《声环境质量标准》(GB3096-2008)1 类标准	55

由上表可以看出,项目厂界南侧敏感点声环境满足《声环境质量标准》 (GB3096-2008)中1类标准。

3.地表水环境质量现状

项目最近地表水国控断面为东南侧 16km 的女儿河卧佛寺断面,依据《葫芦岛市生态环境质量通报(2022 年度)》,项目所在区域地表水质量达标情况详见下下表。

表 21 2022 年女儿河卧佛寺断面水质监测结果统计 单位: mg/L (pH 除外)

项目	化学需氧量	高锰酸盐指数	氨氮	总磷	执行标准
年均值	9. 7	2.5	0.075	0.05	III
标准值	€20	≤6	≤1.0	≤0.2	

由上表中监测数据可知,评价区域地表水环境质量监测值均满足《地表水环境质量标准》(GB3838-2002)中III类水质标准。

4.土壤环境质量现状

辽宁禹宇环境检测有限公司于 2023 年 8 月 2 日对厂址南侧 40m 兰甲屯村居民住宅处的土壤环境进行了检测工作。

(1) 监测因子、监测点布设、监测时间及频次

表 22 土壤现状监测点位一览表

点位 编号	位置	监测因子	时间	监测 频次
1	厂址南 侧 40m 兰 甲屯村 居民住 宅处	砷、镉、铬(六价)、铜、铅、汞、镍、四氯化碳、氯仿、氯甲烷、1,1-二氯乙烷、1,2-二氯乙烷、1,1-二氯乙烯、顺-1,2-二氯乙烯、反-1,2-二氯乙烯、二氯甲烷、1,2-二氯丙烷、1,1,2-四氯乙烷、1,1,2,2-四氯乙烷、四氯乙烯、1,1,1-三氯乙烷、1,1,2-三氯乙烷、三氯乙烯、1,2,3-三氯丙烷、氯乙烯、苯、氯苯、1,2-二氯苯、1,4-二氯苯、乙苯、苯乙烯、甲苯、间二甲苯+对二甲苯、邻二甲苯、硝基苯、苯胺、2-氯酚、苯并[a] 蒽、苯并[a] 芘、苯并[b] 荧蒽、苯并[k] 荧蒽、 ದ 、二苯并[a,h] 蒽、茚并[1,2,3-cd] 芘、萘、二噁英类	2023年8	1次

(2) 监测结果及评价

本项目土壤监测结果见下表。

表 23 土壤监测结果统计表

采样日期	检测项目	单位	检测结果	标准	达标情况
	二噁英类	ngTEQ/kg	1.5	10	达标
	铜		13.8	2000	达标
	铅		18	400	达标
	镉		15. 2	20	达标
	铬 (六价)	mg/kg	0.5L	3.0	达标
	镍		14	150	达标
	砷		5. 5	20	达标
	汞		0.589	8	达标
	四氯化碳		1.3L	900	达标
	氯仿		1. 1L	300	达标
2019年1月	氯甲烷		1. 0L	12000	达标
2 日	1,1-二氯乙烷		1.2L	3000	达标
	1,2-二氯乙烷		1.3L	520	达标
	1,1-二氯乙烯		1.0L	12000	达标
	二氯甲烷	μg/kg	1.5L	94000	达标
	顺-1,2-二氯乙烯	μg/kg	1. 3L	596000	达标
	反-1,2-二氯乙烯		1. 4L	54000	达标
	1,2-二氯丙烷		1. 1L	1000	达标
	1,1,1,2-四氯乙烷		1. 2L	2600	达标
	1, 1, 2, 2-四氯乙烷]	1. 2L	1600	达标
	四氯乙烯]	1.4L	11000	达标
	1, 1, 1-三氯乙烷]	1. 3L	701000	达标

1,1,2-三氯乙烷		1. 2L	600	达标
1, 2, 3-三氯丙烷		1. 2L	50	 达标
氯乙烯		1. 0L	120	 达标
三氯乙烯		1. 4L	700	 达标
苯		1. 9L	1000	达标
氯苯		1. 2L	68000	达标
甲苯		1. 3L	1200000	达标
乙苯		1. 2L	7200	达标
苯乙烯		1. 1L	1290000	达标
1,2-二氯苯		1. 5L	560000	达标
1, 4-二氯苯		1. 5L	5600	达标
间,对-二甲苯		1. 2L	163000	达标
邻二甲苯		1. 2L	222000	达标
硝基苯		0.09L	34000	达标
苯胺		0.01L	92000	达标
2-氯酚		0.06L	250000	达标
苯并[a]蒽		0. 1L	5500	达标
苯并[a]芘		0. 1L	550	达标
苯并[b]荧蒽	mg/kg	0. 2L	5500	达标
苯并[k]荧蒽		0. 1L	55000	达标
崫		0. 1L	490000	达标
二苯并[a, h] 蔥		0. 1L	550	达标
茚并[1, 2, 3-c, d]芘		0. 1L	5500	达标
 萘		0.09L	25000	达标

(6) 评价结果

厂区内土壤质量良好,能够达到《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中"第一类用地的筛选值"标准。

5.电磁辐射质量现状

本项目不涉及电磁辐射项目,无需进行电磁辐射现状调查。

6.生态质量现状

本项目为已建项目不涉及新增用地,馆区内不涉及生态环境保护目标,无需进行生态现状调查。

本项目位于辽宁省葫芦岛市南票区兰甲屯乡兰甲屯村,经现场踏勘,评价区域 500m 内无自然保护区、风景名胜区,无地下水集中式饮用水水源和热水、矿泉水、温泉等特殊地下水资源。

- 1. 大气环境:项目厂界外 5000 米范围内的大气环境保护目标名称及相对位置关系见下表。
- 2. 声环境:本项目厂界外 50 米范围内声环境保护目标名称及相对距离见下表。
 - 3. 地表水环境:本项目污水不外排,无地表水环境保护目标。
- 4. 地下水环境:厂界外 500 米范围内无地下水集中式饮用水水源和热水、矿泉水、温泉等特殊地下水资源。
- 5. 生态环境:本项目为已建项目不涉及新增用地,馆区内不涉及生态环境保护目标。

表 24 环境保护目标一览表

		华	标/m	/m 1.)		环境	相对	相对厂
环境 要素	名称	X	Y	保护 对象	保护内容	功能	厂址	界距离
						X	方位	/m
	兰甲屯村	310020	4555765		801户/1420人		S	40
	下庙子村	309834	4556034		1310 户/23 人		NW	280
大气	南票矿区 总医院	310003	4555344	AUT. I	113 人	二类	S	450
环境				人群		功能区		
	南票区联 合中学	309302	4556032		516 人		W	754
	南票区城	310345	4555034		3950 户/12300 人		SE	841
	⊠a							
声环境	厂界南侧 4	40m 兰甲屯	2村居民住5	宅2户	《声环境质量标	淮》(GE	33096-20)08)1类;
地下水					т:			
环境	无							
生态								
环境	+==:\ <u>\</u>			7 + = -	无			V W 12-

注 a: 南票区城区保护目标调查,包括了南票区政府、南票区实验中学等政府机关、学校的保护内容

1.施工期

(1) 废气

项目施工期扬尘排放标准执行《施工及堆料场地扬尘排放标准》 (DB21/2642-2016)中表 1 扬尘排放浓度限值。具体见下表。

表 25 施工及堆料场地扬尘排放标准

监测项目	适用区域	浓度限值(连续 5min 平均浓度)mg/m³
颗粒物 (TSP)	农村及郊区	1.0

②噪声

噪声排放限值执行《建筑施工场界环境噪声排放标准》(GB12523-2011), 详见下表。

表 26 建筑施工场界环境噪声排放标准

昼间 dB(A)	夜间 dB(A)	
70	55	

2. 营运期

(1) 废气

本项目火化车间火化机焚烧废气排放执行参照《火葬场大气污染物排放标准》(GB13801-2015)中表 2 标准,执行新建单位专用设备(含火化间)的排气筒高度不应低于 12m。排气筒周围半径 200m 距离内有建筑物时,排气筒还应高出最高建筑物 3m 以上。具体标准值见下表。

表 27 《遗体火化大气污染物排放限值》

单位: mg/m³

序号	控制项目	排放限值	污染物排放监控位置
1	烟尘	30	
2	二氧化硫	30	
3	氮氧化物(以 NO2 计)	200	
4	一氧化碳	150	烟囱
5	HCl	30	
6	二噁英类(ng-TEQ/m³)	0.5	
7	汞	0.1	
8	烟气黑度(林格曼黑度)级)	1	烟囱排放口
-T 17	#818		

项目 200m 范围内最高建筑物为火化间,高度为 12m,因此本项目排气筒高度设置 15m

遗物焚烧炉及十二省生肖祭祀炉废气执行《火葬场大气污染物排放标准》(GB13801-2015)中表3标准,详见下表。

表 28 《遗物祭品焚烧大气污染物排放限值》

单位: mg/m³

序号	控制项目	排放限值	污染物排放监控位置
1	烟尘	80	
2	二氧化硫	100	
3	氮氧化物(以 NO ₂ 计)	300	 烟囱
4	一氧化碳	200	1 개의 (의
5	HCl	50	
6	二噁英类(ng-TEQ/m³)	1.0	
2	烟气黑度(林格曼黑度,级)	1	烟囱排放口

项目 200m 范围内最高建筑物为火化间,高度为 12m,因此本项目排气筒高度设置 15m

本项目食堂设置 2 个灶头,参照《饮食业油烟排放标准(试行)》(GB1848 3-2001)标准中的相应标准,本项目规模为小型,饮食业单位油烟的最高允许排放浓度和油烟净化设施最低去除效率,按《饮食业油烟排放标准(试行)》(GB 18483-2001)中的表 2 规定执行,见下表。

表 29 饮食业单位的油烟最高允许排放浓度和油烟净化设施最低去除效率

规模	小型
最高允许排放浓度(mg/m³)	2.0
净化设施最低去除效率(%)	60

项目非甲烷总烃厂界排放浓度执行《大气污染物综合排放标准》(GB16297-1996)中表 2 新污染源大气污染物排放限值二级标准。厂区内挥发性有机物无组织排放监控点浓度执行《挥发性有机物无组织排放控制标准》(GB 37822-2019)表 A. 1 中特别排放限值要求,见下表。

表 30 营运期废气排放标准

	污染源	污染因子	标准浓度限值	执行标准		
	厂界外浓度	非甲烷总烃	4.0mg/m ³	《大气污染物综合排放标准》		
无	最高点	非下灰心灶	4.0mg/m²	(GB16297-1996) 中表 2 标准限值		
组			6mg/m ³			
组织废气		非甲烷总烃	监控点处 1h 平均			
	厂区内		浓度值	执行《挥发性有机物无组织排放控		
) <u> </u>	非甲烷总烃	20mg/m^3	制标准》(GB 37822—2019)		
			监控点处任意一次			
			浓度值			

(2) 噪声

运营期噪声执行《工业企业厂界环境噪声排放标准》(GB12348-2008)中1 类标准,详见下表。

表 31 工业企业厂界噪声排放标准

dB (A)

类别	昼间	夜间
1 类	55	45

(3) 固废

一般工业固废执行《一般工业固体废物贮存和填埋污染控制标准》(GB1859 9-2020); 危险废物执行《危险废物贮存污染控制标准》(GB18597-2023)。

根据《辽宁省生态环境厅关于进一步加强建设项目主要污染物排放总量指标审核和管理的通知》辽环综函〔2020〕380号及《主要污染物总量减排核算技术指南〔2022年修订〕》的通知〕环办综合函[2022]350号等文件要求,并根据区域环境质量现状,在污染物"达标排放"原则的基础上,结合污染防治措施所能达到的实际处理效率,根据项目的特点,污染物排放总量控制指标建议为: 氮氧化物和挥发性有机物。总量申请指标如下:

氦氧化物: 1.9117吨/年: 挥发性有机物: 0.0013t/a。

四、主要环境影响和保护措施

本项目已经建成并运行多年,项目施工期工作内容主要包括:危废暂存间新建、储油罐设置围堰、拆除原有燃煤锅炉、安装空气热能系统、增设油烟净化器等改造工作。燃煤锅炉整体拆除后,原有供热管线保留,新增空气热能系统设备整体安装后与原供热管路对接;油烟净化器等设备均整体进场安装;项目改造工作量较小,工期较短且改造工作不涉及夜间施工,施工中产生少量的扬尘、噪声和固体废物,施工期环境保护措施如下:

(1) 废气

易产生扬尘的工程施工时,应当采取洒水等抑尘措施;

(2) 噪声

尽量选择低噪声设备,合理布置施工场地,施工期必须严格按《建筑施工场界环境噪声排放标准》(GB12523-2011)进行施工噪声的控制,以减少工程建设施工对周边造成的声环境影响;

(3) 固体废物

废边角料及时回收处置,建筑垃圾及时清运;施工现场设置垃圾桶,生活垃圾由环卫部门统一收集处理。

施

1.大气环境影响分析

(1) 废气污染源强

①火化机、遗物祭品焚烧炉、十二生肖祭祀炉废气源强

本项目废气主要为火化机尾气、遗物祭品焚烧尾气和十二生肖祭祀炉焚烧尾气,火化机、遗物祭品焚烧炉、十二生肖祭祀炉年运行约720小时。项目为已建项目,馆内火化机、遗物祭品焚烧炉、十二生肖祭祀炉均已正常运行。本次评价火化机废气源强采用了保守估算方法,参照《火葬场大气污染物排放标准编制说明》中给出的统计数据进行计算。遗物祭品焚烧炉源强采用实测法,十二生肖祭祀炉源强参考遗物祭品焚烧炉,实测法引用数据为现场实际监测结果项目选取监测数据中的最大值进行源强核算,火化机以两台同时运行计算,废气源强核算结果如下表(具体核算过程见大气专项评价):

表 32 本项目废气源强核算结果一览表

污染源	污染物名称	产生速率 (kg/h)	产生浓度 (mg/m³)	拟处理措施	去除 率	排放速率 (kg/h)	排放浓度 (mg/m³)	运行 时间 (h)				
	颗粒物	1. 692	141		95%	0. 0846	7.1					
	二氧化硫	0. 1308	10.9	乌	40%	0.07848	6.5					
	氮氧化物	1. 2168	101.4	急冷装置+ 干法脱硫脱	10%	1. 09512	91.3					
	一氧化碳	1. 536	128	酸系统+布	10%	1. 3824	115.2	720				
7/1	氯化氢	0. 045	3.75	袋除尘+活	30%	0. 0315	2.6					
	汞及其化合物	0. 0036	0.3	性炭吸附	75%	0.0009	0.075					
	二噁英	3.96×10^{-8}	3.3×10 ⁻⁶		90%	3.96×10^{-9}	3.3×10 ⁻⁷					
	颗粒物	3.4	453.3		95%	0.17	22.7	720				
	二氧化硫	0.217	28.9	急冷装置+	40%	0.13	17.3					
遗物	氮氧化物	0.87	115.6	干法脱硫脱	10%	0.78	104					
焚烧 炉	一氧化碳	0.32	43	酸系统+布 袋除尘+活	10%	0.29	38.7					
	氯化氢	0.07	9.5	性炭吸附	30%	0.05	6.7					
	二噁英	1.98×10^{-10}	2.64×10 ⁻⁸		90%	1.98×10^{-11}	2.64×10 ⁻⁹					
十二	颗粒物	3.4	809.5	急冷装置+	95%	0.17	40.5					
生肖	二氧化硫	0.217	51.6	干法脱硫脱酸系统+布	40%	0.13	31.0	720				
祭祀	氮氧化物	0.87	206.3	酸系统+和 袋除尘+活	10%	0.78	185.7					
炉 	一氧化碳	0.32	76.7	性炭吸附	10%	0.29	69					

氯化氢	0.07	17	30%	0.05	11.9	
二噁英	1.98×10^{-10}	4.71×10 ⁻⁸	90%	1.98×10^{-11}	4.71×10 ⁻⁹	

非正常工况:

本项目涉及非正常排放原因可能为废气处理设施部分失效或故障等导致污染物排放量增加。当营运期非正常工况时,污染物排放情况如下:

表 33 本项目非正常工况废气源强核算结果一览表

污染源		拟处理措施	去除率	排放速率	排放浓度		拟发生
	merster, etc.			(kg/h)	(mg/m ³)	间 (h)	频次_
	颗粒物		20%	1.3536	112.8		
	二氧化硫		0	0.1308	10.9		
	氮氧化物	急冷装置+干	0	1.2168	101.4		
火化机	一氧化碳	法脱硫脱酸系 统+布袋除尘	0	1.536	128	1	
	氯化氢	+活性炭吸附	0	0.045	3.75		
	汞及其化合物		20%	0.00288	0.24		
	二噁英		10%	3.564×10 ⁻⁸	0.297×10^{-6}		
	颗粒物		20%	2.72	362.7		
	二氧化硫	急冷装置+干法脱硫脱酸系统+布袋除尘+活性炭吸附		0	0.217	28.9	
遗物焚烧	氮氧化物		0	0.82	109.4	1	2 次/a
炉	一氧化碳		0	0.32	43		
	氯化氢		0	0.07	9.4		
	二噁英		10%	1.78×10 ⁻¹⁰	2.376×10^{-8}		
	颗粒物		20%	2.72	647.6		
	一氧化碳	急冷装置+干	0%	0.217	51.6		
十二生肖	二氧化硫	法脱硫脱酸系	0	0.82	195.4	1	
祭祀炉	氮氧化物	统+布袋除尘	0	0.32	76.7] 1	
	氯化氢	+活性炭吸附	0	0.07	16.9		
	二噁英		10%	1.78×10 ⁻¹⁰	4.243×10^{-8}		

②柴油储罐工作过程损失废气

项目使用柴油作为火化遗体的燃料,项目火化间内有 1 座 3000L 的油罐,油罐设有呼吸阀,油罐在工作过程中由于装卸料会产生挥发性有机物,污染物为挥发性有机物(以 NMHC 计)。

本次油品挥发系数来自于《排放源统计调查产排污核算方法和系数手册》中"油品储运销污染物排放系数手册:辽宁省"。

表 34 储油罐废气源强核算一览表

油品	产汚工序	总罐容	储罐类型	无油气回收装
				置
柴油	工作过程损失(吨/吨周转	/	固定顶储罐	5.0×10^{-5}
	量)			
	静置损失(吨.年)	/	固定顶储罐	/

本项目柴油年装卸量为 26t/a, 因此工作过程损失 NMHC 产生量为 0.0013t/a, 产生量较少, 废气随车间门窗无组织排放。项目每年装油、卸油工作时间为 180 h, 则排放速率为 0.0072kg/h。

③食堂油烟

建设项目职工食堂大气污染主要来自于食堂产生的油烟。本项目劳动定员 2 3 人,每人日耗油 25g,本项目日耗食用色拉油约 0.575kg/d,年用量约 210kg/a。

按日进行烧炸工况 1.2 小时计,油的平均挥发量为总耗油量的 3%。排风量为 3000m³/h,通过油烟净化效率 60%的油烟净化器处理后在屋顶排放,食堂油烟产生及排放情况见下表,可满足 GB18483-2001《饮食业油烟排放标准》(试行)中的油烟排放标准。

表 35 油烟废气产排情况

产生源	污染物	产生情况		治理措施		排放情况			排放时	
	名称	核算 方法	浓度 (mg/m³)	产生量 (t/a)	工艺	去除 率%	核算 方法	浓度 (mg/m³)	排放量 t/a	间
食堂	油烟	类比 法	4.8	0.0063	油烟净 化器	60	物料 衡算	1.92	0.0252	438h

(2) 废气排放口基本情况。

本项目废气有组织废气排放情况见下表。

表 36 废气排放口基本情况便

排放口 名称	编号	排气筒底部中心 坐标/m		排气 筒高	出口	烟气	污染物	排放标准	 类型	
		X	Y	度	内 径	温度	17.77	mg/m ³		
火化机	DA 001	210204	1556015	1.5	0.4	90	颗粒物	30	一般	
废气	DA001	310204 4556045		15	0.4	90	SO_2	30	排放	

							NOx	200	П
							СО	150	
							HC1	30	
							汞	0.1	
							二噁英 ngTEQ/Nm³	0.5	
							烟气黑度	1	
							颗粒物	80	
							SO ₂	100	
遗物焚							NOx	300	一般
烧炉废 烧炉废	DA002	310236	4556062	15	0.4	90	СО	200	排放
气							HCl	50	П
							二噁英 ngTEQ/Nm³	1.0	
							烟气黑度	1	
							颗粒物	80	
							SO_2	100	
十二生							NOx	300	一般
肖祭祀	DA003	310239	4556061	15	0.3	90	СО	200	排放
炉废气							HCl	50	П
							二噁英 ngTEQ/Nm³	1.0	
							烟气黑度	1	

(3) 污染物核算

本项目有组织排放量核算见下表。

表 37 大气污染物有组织排放量核算表

序 号	排放口 编号	污	染物	核算排放 浓度μg/m³	核算排放 速率 kg/h	核算年 排放量 t/a
			颗粒物	7050	0.0846	0.0609
			SO_2	6540	0.0785	0.0565
			NOx	91260	1.095	0.7885
1	DA001	火化机 废气	HCl	6480	0.06	0.0432
			СО	115200	1.3824	0.9953
			汞	75	0.0009	0.000648
			二噁英	0.00033	3.96×10 ⁻⁹	2.8512×10 ⁻⁹

			颗粒	物	22700		0.17	0.1224	
			SO	2	17300		0.13	0.0936	
		 遗物焚烧炉	NO	x	104000		0.78	0.5616	
2	DA002	废气	НС	1	6700		0.05	0.036	
			СО	,	38700		0.29	0.2088	
			二噁	英	2.64×10 ⁻⁶	1.9	8×10 ⁻¹¹	1.4256×10 ⁻¹¹	
			颗粒	物	40500		0.17	0.1224	
			SO	2	30950		0.13	0.0936	
		十二生	NO	x	185700		0.78	0.5616	
3	DA003	肖祭祀 炉废气	НС	1	11900		0.05	0.036	
			СО	,	69000		0.29	0.2088	
			二噁	英	0.00000471	1.9	8×10 ⁻¹¹	1.4256×10 ⁻¹¹	
					颗粒物			0.3057	
					SO_2			0.2437	
					NOx			1.9117	
丰	有组织排放	文量合计			HCl			0.1152	
					CO			1.4129	
					汞			0.000648	
					二噁英			2.88×10 ⁻⁹	
			表 38 プ	大气污染!	物无组织排放	女量核算 表	₹		
序	排放口		染物	主要	国家或是	地方污染物	勿排放标准	年排放量/	
号	编号	环节		污染 防治	标准名	三	浓度限值		
				措施			(μ g/m ³		
1	/	储油 N 罐	MHC	/	《大气污刻 排放标		4	0.0013	
		以 臣			(GB16297				
	无组织排放总计			织排放总计					
			NHM C			0.0013			
			表 39		- 5染物排放量	加排放量核算表 加排放量核算表			
	序号		ì				年排放量	(t/a)	
 		<u> </u>							

1	颗粒物	0.3057
2	SO_2	0.2437
3	NOx	1.9117
4	HCl	0.1152
5	СО	1.4129
6	汞	0.000648
7	二噁英	2.88×10 ⁻⁹
8	NMHC	0.0013

(4) 废气污染源监测计划。

根据污染排放的实际情况及根据《排污单位自行监测技术指南 总则》(HJ81 9-2017)中的相关要求,废气监测制度详细内容见下表。

表 40 废气监测计划

内容	监测点位	监测项目	检测频率	执行排放标准
		颗粒物		
		SO_2		
		NOx		
		CO		《火葬场大气污染物排
	15m排气筒DA001	HCl	1 次/半年	放标准》(GB13801-20
		汞		15) 中表2标准
		二噁英	-	
		ngTEQ/Nm ³		
		烟气黑度		
		颗粒物		
废气		SO_2		
		NOx		
	 15m排气筒DA002	СО	1 次/半年	《火葬场大气污染物排
	.,, .,,	HCl		放标准》(GB13801-20
		二噁英	1	15) 中表3标准
		ngTEQ/Nm ³		
		烟气黑度		
	15m排气筒DA003	颗粒物	1 次/半年	
	13III)非《同DAUU3	烟气黑度] 1 伙/十年	
	厂界上风向1个监测点, 下风向3个监测点	非甲烷总烃	1 次/年	《大气污染物综合排放 标准》(GB16297-1996)

			中表2标准限值
火化车间外设置1个监测 点	非甲烷总烃	1 次/年	《挥发性有机物无组织 排放控制标准》(GB 3 7822—2019)

(5) 大气环境影响分析

本项目所在区为环境空气质量达标区,该项目火化机尾气通过 2 套"急冷装置+干法脱硫脱酸系统+布袋除尘+活性炭吸附"尾气治理系统处理后,统一经 15 m 排气筒 DA001 排放; 焚烧废气通过 1 套"急冷装置+干法脱硫脱酸系统+布袋除尘+活性炭吸附"尾气治理系统处理后,统一经 15m 排气筒 DA002 排放; 12 生肖祭祀炉尾气通过 1 套"急冷装置+干法脱硫脱酸系统+布袋除尘+活性炭吸附"尾气治理系统处理后,统一经 15m 排气筒 DA003 排放。具体达标情况见下表:

表 41 废气污染物达标情况分析

 排放		排放情况	执行标准	达标情	
源	污染因子	浓度 mg/m³	浓度mg/m³	况	执行标准
	烟尘	7.05	30	达标	
	二氧化硫	6.54	30	达标	
	氮氧化物(以 NO ₂ 计)	91.26	200	达标	
D 4 0 0	一氧化碳	115.2	150	达标	《火葬场大气污》
DA00 1	HCl	6.48	30	达标	染物排放标准》 (GB13801-2015
	二噁英类(ng-TEQ/m³)	0.33	0.5	达标)中表2标准限值
	汞	0.075	0.1	达标	
	烟气黑度(林格曼黑度)	<1	1	 	
	级)		-	,	
	烟尘	22.7	80	达标	
	二氧化硫	17.3	100	达标	
	氮氧化物(以 NO2 计)	104	300	达标	《火葬场大气污》
DA00 2	一氧化碳	38.7	200	达标	染物排放标准》 (GB13801-2015
	HCl	6.7	50	达标)中表3标准限值
	二噁英类(ng-TEQ/m³)	0.00264	1.0	达标	
	烟气黑度(林格曼黑度,	<1	1	达标	

_					
		级)			
		烟尘	40.5	80	达标
		二氧化硫	30.95	100	达标
		氮氧化物(以 NO2 计)	185.7	300	达标
	DA00 3	一氧化碳	69	200	达标
	3	HCl	11.9	50	达标
		二噁英类(ng-TEQ/m³)	0.00471	1.0	达标
		烟气黑度(林格曼黑度,级)	<1	1	达标

由上表可知,火化车间 DA001 排气筒各污染物排放浓度均满足《火葬场大气污染物排放标准》(GB13801-2015)中表 2 标准限值要求;焚烧车间 DA002、DA003 排气筒各污染物排放浓度均满足《火葬场大气污染物排放标准》(GB138 01-2015)中表 3 标准限值要求;项目在采取有效措施治理后,废气污染物对周边环境影响不大。

本项目无组织废气中污染物主要为非甲烷总烃,厂界最近距离为 9m, 经预测,项目厂界非甲烷总烃排放浓度为 14.238 µ g/m³,排放浓度均满足《大气污染物综合排放标准》(GB16297-1996)中表 2 标准限值。

2.地表水环境影响分析

本项目不设置遗体清洗工序,无生产废水,主要废水为生活污水(包含餐饮废水),生活用水包括馆内工作人员的生活用水和吊唁人员的生活用水。

根据《辽宁省地方标准行业用水定额》(DB21/T1237—2020)表 177 "U99 2 农村居民生活用水定额",生活用水馆区员工按每人每天 60L 计算,本项目工作人员 23 人,年工作 365d,生活用水量 1.38m³/d,503.7m³/a。

吊唁人员按80人/d计,由于吊唁时间较短,估测人数按10人/d计,用水量10L/人•天计算,则吊唁人员用水量0.1m³/d,36.5m³/a。

餐饮用水参考《辽宁省地方标准行业用水定额》(DB21/T1237—2020)表 1 54 "H622 快餐服务用水定额"中先进值 5m³ (m²•a),项目食堂面积为 104m²,则餐饮用水量为 1.425m³/d, 520m³/a。

项目生活污水用水量为 $1060.2 \text{m}^3/\text{a}$,污水按用水量 85%计,生活污水主要污染物为 COD、 NH_3 -N、总磷、总氮,污染物源强参考《排放源统计调查产排污核算方法和系数手册》(2021 年 6 月 9 日发布)中附表 1 生活污染源产排污系数手册表 2-1 中数据,COD: 16.9 g/(人 \cdot d)、 NH_3 -N: 0.25 g/(人 \cdot d)、总磷: 0.09 g/(人 \cdot d)、总氮: 0.78 g/(人 \cdot d),项目 365 天运行,馆区工作人员 23 人,吊唁人员按 10 人/d 计,则污染物产生量分别为: COD: 0.204 t/a、 NH_3 -N: 0.003 t/a、总磷: 0.0011 t/a、总氮: 0.0094 t/a。

综上所述,本项目生活污水产生量 901.17m³/a,生活污水排入旱厕,定期清掏,粪便由当地农民拉走做农肥。

3.声环境影响分析

(1) 噪声源强

本项目已投产运行,噪声主要为各类水泵、风机及高噪声设备运行产生的噪声,高噪声设备均布置于室内。根据企业设备参数项目主要室内噪声设施源强情况见下表。

表 42 本项目主要产噪设备噪声源强调查清单(室内声源) 单位: dB(A)

	建筑	声		声源源 强		空间	相对位	.置/m	距室	室内	运	建筑物	建筑物	外噪声
序号	物名称	源名称	型号	声压级/ 距声源 距离/lm	声源控制措施	X	Y	Z	内边 界距 离/m	边界 声级	行时段	插入损失	声压级	建筑 物外 距离 /m
					采用低				E:1	75.5		49	19.3	1
1	告别	音	/	70/1m	噪声设	-3	9	2.5	S:10	74.3		32	36.3	1
1	厅	响	′	/ 0/ 1111	备,安	-5		2.5	W:20	74.3		49	19.3	1
					装基础				N:1	75.5		/	/	1
		1#			减震,				E:5	86.9		36	44.7	1
2		引	/	85/1m	墙体隔	-1	28	0.6	S:5	86.9		/	/	1
-		风	ĺ ′	03/1111	声,门	•	20	0.0	W:9	86.8		36	44.7	1
		机			窗关				N:2	87.3	昼	33	47.7	1
	火化	2#			_{國大} 闭; 鼓				E:8	86.8	间	36	44.7	1
3	机尾	引	,	85/1m	风机进	-4	28	0.6	S:5	86.9		/	/	1
]	气处	风	'	03/1111		-4	20	0.0	W:6	86.8		36	44.7	1
	理间	机			口设置消声				N:2	87.3		33	47.7	1
		1#							E:5	81.9		36	39.7	1
4		鼓	,	80/1m	器;引	-2	31	0.6	S:2	82.3		/	/	1
4		风	′	00/1111	风机设	-2	31	0.0	W:9	81.8		36	39.7	1
		机			置隔声				N:5	81.9		33	42.7	1

Solution			2#			罩壳;				E:8	81.8	36	39.7	1
A	5					I I						/	/	
				/	80/1m	l I	-5	32	0.6		81.8	36	39.7	1
Part			机			I I				N:5	81.9	33	42.7	1
Part						1 1				E:3	88.3	39	43.3	1
No. No.	6		引	,	0.5./1	,	22	60	0.6	S:8	88.3	/		1
Part			风	/	85/1m		23	62	0.6	W:5	88.3	34	48.3	1
7			机							N:2	88.7	38	44.3	1
大学院 风			2#] [E:6	88.3	39	43.3	1
Purple Al	7		引	,	05/1m		20	62	0.6	S:8	88.3	/	/	1
B 三大 三大 三大 三大 三大 三大 三大				/	03/1111		20	02	0.0	W:2	88.7	34	43.3	1
B 理问 鼓			机							N:2	88.7	38	44.3	1
Part	0											39	38.3	1
No.6 83.3 38 39.3 1 1 1 1 1 1 2 2	8	理间		,	80/1m		24	58	0.6				/	
Part			, .	′	00/1111		24	36	0.0					
Boundary Boundary														
10 空	a												38.3	
10 空				/	80/1m		21	58	0.6				/	
Table Tab				,	00/1111				0.0					
10 元 元 10 元 元 10 元 元 元 元 元 元 元 元 元			机											
The property of the propert	10		空											
11			压	/	85/1m		-1	24	0.6		-		,	
11			机										42.3	
11 大化 鼓			1#			-							37 3	
大化 大化 大化 大化 大化 大化 大化 大化	11												/	
大化 机				/	80/1m		-3	12	0.6				37.3	
12 年间 2# 39 37.3 1 12 鼓 / 80/1m -6 13 0.6 E:5 82.4 39 37.3 1 13 規 / 1 13 0.6 N:5 82.4 82.3 39 37.3 1 39 37.3 1 N:5 82.4 / <t< td=""><td></td><td>水化</td><td>机</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		水化	机											
12													37.3	
12		7-1-7		ļ ,	004		-					/		1
N:5 82.4	12		风	/	80/1m		-6	13	0.6			39	37.3	1
13 鼓			机							N:5	82.4	/	/	1
13			3#]				E:8	82.3	39	37.3	1
	12		鼓	,	00/1		0	12	0.6	S:12	82.3	/		1
	15		风	/	δυ/1m		-9	13	0.6	W:11	82.3	39	37.3	1
			机							N:5	82.4	/	/	1

注: 以火化间东南角为坐标 0,0 点

项目各车间单元隔声量取值及影响条件见下表:

表 43 各车间单元隔声量取值

亨	单元名	边界	边界条件	隔声取值	综合隔声
号	称	名称	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	dB (A)	量dB(A)
		东侧 边界	砖混墙体,面积约40m²,不设门窗;	墙体隔声量取49;	49
1	告别厅	南侧边界	砖混墙体,面积约80m²,设采光 窗约12m²;出入门1个约4m²	窗户隔声量取25; 出入门隔声量取25; 墙体隔声量取49;	32

		西侧 边界	砖混墙体,面积约40m²,不设门 窗;	墙体隔声量取49;	49
		北侧	砖混墙体,面积约80m²,设出入	北侧紧邻火化车间	/
		边界	门1个约4m ² ;	不对外环境影响	,
		东侧	砖混墙体,面积约75m²,设采光	墙体隔声量取49;	36
		边界	窗2个约6m ² ;	窗户隔声量取25;	30
		南侧	砖混墙体,面积约140m²,设出	南侧紧邻火化车间	/
	火化机	边界	入门1个约2m ²	不对外环境影响	,
2	尾气处	西侧	砖混墙体,面积约75m²,设采光	墙体隔声量取49;	36
	理间	边界	窗2个约6m ² ;	窗户隔声量取25;	30
		412 Amil	左洞座体 - 東和始140·2	窗户隔声量取25;	
		北侧 边界	砖混墙体,面积约140m²,设采 光窗约16m²,出入门1个约5m²,	出入门隔声量取25;	33
		20分	元 图 约 16 m²,	墙体隔声量取49;	
		东侧	砖混墙体,面积约88m²,设采光	墙体隔声量取49;	39
		边界	窗2个约3m ² ;	窗户隔声量取25;	39
		南侧	砖混墙体,面积约64m²,不设门	南侧紧邻焚烧车间	,
	焚烧炉	边界	窗;	不对外环境影响	/
3	尾气处	चार विच	建	窗户隔声量取25;	
	理间	西侧 边界	一砖混墙体,面积约88m²,设采光	出入门隔声量取25;	34
		20分	窗约8m ² ,出入门1个约3m ² ;	墙体隔声量取49;	
		北侧	砖混墙体,面积约64m²,设采光	墙体隔声量取49;	20
		边界	窗2个约3m ² ;	窗户隔声量取25;	38
		东侧	砖混墙体,面积约90m²,设采光	墙体隔声量取49;	20
		边界	窗2个约3m ² ;	窗户隔声量取25;	39
		南侧	砖混墙体,面积约100m²,设出	南侧紧邻告别厅不	,
	1.41.7	边界	入门1个约2m ²	对外环境影响	/
4	火化车	西侧	砖混墙体,面积约90m²,设采光	墙体隔声量取49;	20
	间	边界	窗2个约3m ² ;	窗户隔声量取25;	39
				北侧紧邻火化机尾	
		北侧	一砖混墙体,面积约100m²,不设	气处理间不对外环	/
		边界	门窗;	境影响	

(2) 声环境影响分析

项目已建成并运用,各类水泵、风机及高噪声设备均已投产运行,因此项目厂界及敏感点噪声值直接引用辽宁禹宇环境检测有限公司于 2023 年 4 月 27 日对本项目厂界四周进行的监测数据,监测期间设备均正常运行,具体监测数据及达标情况见下表。

表 44 厂界噪声检测结果及达标分析

检测日期		2023.4.27	《工业企业厂界环境噪声排放标准》(GB12348-2008)中的1类标准	达标情况
检测项目	检测点位名称	昼间dB(A)	昼间dB(A)	昼间dB(A)
厂界噪声	东厂界	50.3	55	达标

南厂界	48.9	55	达标
西厂界	48.9	55	达标
北厂界	50.2	55	达标

项目仅昼间运行,由表 44 可知,项目在现有设备正常运行情况下昼间厂界噪声满足《工业企业厂界环境噪声排放标准》(GB12348-2008)中的 1 类标准,项目的运行对周边声环境影响不大。

根据辽宁禹宇环境检测有限公司于 2023 年 6 月 6 日对项目厂界南侧 40m 兰甲屯村居民住宅处噪声值为 41dB(A)(见表 19),项目敏感点处噪声值满足《声环境质量标准》(GB3096-2008)中的 1 类标准限值要求,本项目对敏感点处噪声影响不大。

(2) 监测计划

噪声污染源及环境质量监测计划见表 45、表 46。

表 45 噪声污染源监测计划

内容	监测点位	监测项目	检测频率	执行排放标准
噪声	厂界四周	Leq(A)	1 次/季	《工业企业厂界环境噪声排放标准》 (GB12348-2008)中1类区要求

表 46 噪声环境质量监测计划

内容	监测点位	监测项目	检测频率	执行排放标准
噪声	厂界南侧40m 兰甲屯村居民 住宅处	Leq(A)	1 次/季	《声环境质量标准》(GB3096-2008) 中的1类标准限值要求

4.固体废物影响分析

(1) 固体废物源强

项目营运期固废具体产生排放情况见下表。

表 47 固体废物污染源源强核算结果及相关参数一览表

	固体废	固废	固废			产生	E情况	
装置	物名称	風火	形态	类别	固废代码	核算	产生量	最终去向
	M2-H-M1	77				方法	(t/a)	
火化机	火化骨灰	一般固· 废	固	/	900-999-99		3	家属带走,葬入 墓地
焚烧炉	焚烧灰 渣		固	/	900-999-99		1	暂存于焚烧炉 底部,定期清掏 后直接送至城

							市垃圾填埋场
七代以小	脱硫渣		固	HW18	772-003-18	2. 6	
布袋除尘 器	回收粉尘		固	HW18	772-003-18	5.8082	 分类暂存于危
нн	废布袋	危险废	固	HW18	772-003-18	0. 13	废暂存间,定期
活性炭吸 附装置	废活性炭	物	固	HW18	772-005-18	4	委托有资质单 位处置
火化机检修	废耐火材 料		固	HW36	900-031-36	0. 3	
/	生活垃圾	/	固	/	/	7. 1175	定期由环卫部 门统一清理

(2)污染源源强核算过程

本项目固体废物有火化骨灰、火化机尾气治理系统产生的废活性炭、脱硫渣、废布袋及除尘器回收粉尘;遗物焚烧炉和十二生肖祭祀炉产生的焚烧灰渣;员工及治丧人员产生的生活垃圾。

①火化骨灰

根据项目运行多年数据,每具遗体火化产生的骨灰约 1.5kg,建成后年焚尸量 2000 具,年产生火化骨灰 3t/a,由各逝者家属装入骨灰盒带走,葬入墓地。

②遗物焚烧及祭品焚烧灰渣

根据建设单位提供数据,平均每具遗体遗物焚烧及祭祀用品焚烧量约 20kg,灰渣产生量 0.5kg。本项目年焚尸量 2000 具,年产生遗物焚烧及祭祀用品焚烧灰渣 1t/a,焚烧灰渣暂存于焚烧炉底部,定期清掏后直接送至城市垃圾填埋场。

③布袋除尘器回收粉尘

根据"废气源强核算"分析可知,项目布袋除尘器共计回收粉尘约 5.8082t/a,主要来源于火化机、焚烧炉和十二生肖祭祀炉。根据《国家危险废物名录(2021)》,废活性炭属于危险废物,类别为(HW18,废物代码 772-003-18)应分别收集,暂存于危废暂存间,定期交有资质单位处置。

④脱硫渣

火化机尾气净化处理设备需喷消石灰,与烟气反应生成 CaSO₃、CaSO₄、Ca Cl₂等,需定期清理,根据建设单位提供数据,项目石灰(CaO)使用量为 2t/a,脱硫渣(CaSO₃、CaSO₄)产生量约为: 2.6t/a。属于危险废物,类别为(HW18,废物代码 772-003-18)收集后,暂存于危废暂存间,定期交有资质单位处置。

⑤废布袋

项目尾气处理装置中的布袋需定期更换,更换布袋会产生废布袋。本项目布袋除尘器三年更换一次,废布袋约 0.39t/3a。废布袋属于危险废物,类别为(HW 18,废物代码 772-003-18)应分别收集,暂存于危废暂存间,定期交有资质单位处置。

⑥废活性炭

火化机治理系统及遗物焚烧炉治理系统活性炭更换周期为每三个月更换一次,项目共计4套尾气处理设备(火化机治理设施2套,遗物焚炉治理设施1套、十二生肖祭祀炉1套),单次最大填充量为0.975t,单次废气吸附量约0.025t,每次更换的废活性炭量约为1t,全年收集废活性炭4t。根据《国家危险废物名录(2021)》,废活性炭属于危险废物,类别为(HW18,废物代码772-005-18)应分别收集,暂存于危废暂存间,定期交有资质单位处置。

⑦废耐火材料

火化机需定期维修,更换产生废耐火材料。火化机厂家负责定期更换,项目年废耐火材料产生量约为 0.3t/a,属于危险废物(HW36 石棉废物,废物代码 900 -031-36),暂存于危废暂存间内,分类收集,定期交有资质单位无害化处理。

⑧生活垃圾

(3) 固废影响分析

本项目生活垃圾收集至垃圾桶,定期委托环卫部门处置;骨灰由逝者家属装入骨灰盒带走,葬入墓地;祭品焚烧灰渣暂存于焚烧炉底部,定期清掏后直接送至城市垃圾填埋场。火化机治理系统及遗物焚烧炉治理系统产生的废活性炭、除尘器回收粉尘、脱硫渣、废布袋与遗物、收集后,暂存于危废暂存间,定期交有资质单位处置。项目产生的各种固体废物均得到妥善处置,从根本上解决了固体

废物的污染问题,不仅实现了固体废物的资源化和无害化处理,避免因固体废物 堆存对环境造成的影响。

(4) 环境管理要求

一般固废:生活垃圾分类收集,由环卫部门统一清运处理;骨灰由逝者家属装入骨灰盒带走,葬入墓地;祭品焚烧灰渣暂存于焚烧炉底部,定期清掏后直接送至城市垃圾填埋场。

危险废物:为防止危险废物收集、贮存、运输过程中对环境的污染,环评提出如下危险废物暂存、转运的管理要求:

- 1)危险废物的收集包装
- A.有符合要求的包装容器、收集人员的个人防护设备:
- B.危险废物的收集容器应在醒目位置贴有危险废物标签,在收集场所醒目的 地方设置危险废物警告标识。所有收集容器必须密闭;
- C.危险废物标签应标明以下信息:主要化学成分或危险废物名称、数量、物理形态、危险类别、安全措施以及危险废物产生单位名称、地址、联系人及电话。
 - 2)危险废物的暂存要求

危险废物堆放场应满足《危险废物贮存污染控制标准》GB18597-2023 有关规定:

A.按《环境保护图形标识——固体废物贮存(处置)场》GB15562.2 设置警示标志。

B.要求必要的防风、防雨、防晒措施。危险废物暂存间地面与裙脚要用坚固、防渗材料制造。暂存间均需要设置围堰、防爆照明措施和观察口。暂存间地面必须为耐腐蚀的硬化地面,且表面无裂痕。危废暂存间地面采用 2 毫米厚的聚乙烯材料进行防渗处理,确保渗透系数不大于 1.0×10⁻¹⁰ 厘米/秒。建设单位应做好危废暂存间的防火、防渗措施,加强安全管理,制定严格的生产管理规章制度。应使用符合标准的容器盛装废物,废物需放置于干燥、凉爽、通风环境,防止被雨淋,流经地表,对地表及地下水造成污染。

C.要有隔离设施或其它防护栅栏。

D.应配备通讯设备、照明设施、安全防护服装及共聚,并设有报警装置和应 急防护设施。

3)转运要求

A.内部转运要求

危险废物产生以后,应按照规范要求进行收集包装,各类危险废物应分类收集并按照其性质选择不同的容器进行收集,同时厂区内部应就每个产生危险废物的点至危废暂存间设置专门的通道,在转运的过程中,必须要由专人按照转运的规范要求进行转运,转运路线不能有未进行防渗的路段或者存在污染风险的路段。在转运过程中,一定要防止泄露、散落危险废物,一旦发生,应立即采取相应的危废废物泄露的防范措施。转运到危废暂存间后, 应对危险废物进行清点,看是否存在散落、泄露等情况。

B. 外部转运要求

危险废物转运时必须安全转移,防止撒漏,且由具处理资质的单位接手,并 严格落实以下要求:

- a.危险废物每次外运处置均需做好运输登记,认真填写危险废物转移联单。
- b.废弃物运输必须由已签订的危废处置单位负责,处置单位每次处置应以书 面形式告知建设单位危险废物最终去向。
- c.危险废物运输路线必须严格按照有关部门批准的路线运输; 若必须更改运输路线, 需经有关部门同意后才可实施。

根据中华人民共和国国务院令第 344 号《危险化学品安全管理条例》的有关规定,在危险废弃物外运至处置单位时必须严格遵守以下要求:

- ①做好每次外运处置废弃物的运输登记,认真填写危险废物转移联单(每种废物填写一份联单),并加盖公司公章。
- ②废弃物处置单位的运输人员必须掌握危险化学品运输的安全知识,了解所运载的危险化学品的性质、危害特性、包装容器的使用特性和发生意外时的应急措施。运输车辆必须具有车辆危险货物运输许可证。驾驶人员必须由取得驾驶执照的熟练人员担任。

- ③处置单位在运输危险废弃物时必须配备押运人员,并随时处于押运人员的 监管之下,不得超装、超载,严格按照所在城市规定的行车时间和行车路线行驶, 不得进入危险化学品运输车辆禁止通行的区域。
- ④危险废弃物在运输途中若发生被盗、丢失、流散、泄漏等情况时,公司及 押运人员必须立即向当地公安部门报告,并采取一切可能的警示措施。
- ⑤一旦发生废弃物泄漏事故,公司和废弃物处置单位都应积极协助有关部门 采取必要的安全措施,减少事故损失,防止事故蔓延、扩大;针对事故对人体、动植物、土壤、水源、空气造成的现实危害和可能产生的危害,应迅速采取封闭、隔离、洗消等措施,并对事故造成的危害进行监测、处置,直至符合国家环境保护标准。

(3) 制度管理要求

公司应制定并上墙危险废物污染环境防治管理制度、危险废物污染防治责任制度、危险废物标识标牌制度、危险废物贮存场所防渗层剖面图、危险废物厂内运输过程污染防治管理责任制度、危险废物分类分区贮存管理制度、危险废物安全操作规程、危险废物管理计划及备案制度、危险废物申报登记制度、危险废物源头分类制度、危险废物转移联单制度、危险废物应急预案及备案等制度,同类型制度可合并制定,不需要上墙的制度可制定存档,定期对公司员工进行组织培训。根据最新的《中华人民共和国固体废物污染环境防治法》,企业应建立工业固体废物管理台账,如实记录工业固体废物的种类、数量、流向、贮存、利用、处置等信息,实现工业固体废物可追溯、可查询。

综上,固体废物做到及时收集,妥善处理,能够符合《中华人民共和国固体废物污染环境防治法》(2013年修订)、《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020)及《危险废物贮存污染控制标准》(GB18597-2023)。因此固废处置措施是可行的。

5.地下水、土壤环境影响分析

项目厂区地面采取硬化防渗处理,无污染途径。 运行期地下水和土壤环境保护措施如下:

采用分区防渗,按照《危险废物贮存污染控制标准》(GB18597-2023)建设 危废暂存间, 参照《石油化工工程防渗技术规范》(GB/T 50934—2013)针对 储油罐围堰做防渗处理;要求旱厕、火化区达到一般防渗区要求;对其他功能间 区域做简单防渗区。详见下表:

序号 类型 防渗区域 防渗内容 危废暂存间 等效黏土防渗层Mb≥1.0m, K≤1×10⁻⁷; 1 重点防渗区 等效黏土防渗层Mb≥1.0m, K≤1×10⁻⁷; 储油罐所在车间 或参照执行GB18598执行 等效黏土防渗层Mb≥1.5m, K≤1×10⁻⁷; 2 一般防渗区 旱厕、火化区 或参照执行GB16889执行

一般地面硬化

其他功能间区域

表 48 防渗区域及防渗内容

6.环境风险

(1) 风险源调查

简单防渗区

①风险源识别

根据《建设项目环境风险评价技术导则》(HJ169-2018)以及《危险化学品重大危险源辨识》(GB18218-2018),对本项目进行风险调查,通过对建设项目的原辅材料从毒性、易燃和易爆等方面进行风险物质识别,本项目涉及的危险物质为柴油。主要危险性质为易燃易爆有毒等。建设项目环境风险识别表见下表。

建设项目环境风险识别表

危险单元	风险源	主要危险物质	环境风 险类型	环境影响途径	可能受影响的 环境敏感目标
火化	柴油罐	柴油	1-2	环境空气、地下水、 土壤、地表水	附近居民

表 50 表风险物质理化性质及危险特性

名称	理化性质	燃烧爆炸性	毒理性质
柴油	水,溶于乙醇等,相对 密度 (水=1): <1,闪点(℃):	其蒸汽与空气可形成爆炸性混合物, 遇明火、高热能引起燃烧爆炸,与氧 化剂可发生反应,流速过快,容易道 理和积聚静电,其蒸所比空气重,能 在较低处扩散到相当远的地方,遇火	低毒

②突发环境事件风险物质及临界量

根据《建设项目环境风险评价技术导则》(HJ/T169-2018)附录 C.1, 计算

所涉及的每种危险物质在厂界内的最大存在总量与其在附录 B 中对应临界量的比值 Q。在不同厂区的同一种物质,按其在厂界内的最大存在总量计算。

当只涉及一种危险物质时, 计算该物质的总量与其临界量的比值, 即为 Q; 当存在多种危险物质时,则按式(C. 1)计算物质总量与其临界量比值(Q);

$$Q = \frac{q_1}{Q_1} + \frac{q_2}{Q_2} + \dots + \frac{q_n}{Q_n}$$

式中: q_1 、 q_2 ...qn—每种危险物质的最大存在总量, t:

 Q_1 、 Q_2 ... Q_n —每种危险物质的临界量,t。

当 Q<1 时,该项目环境风险潜势为 I。

当 Q≥1 时,将 Q 值划分为: 1≤Q<10; 10≤Q<100; Q≥100。

对照《建设项目环境风险评价技术导则》(HJ/T169-2018)附录 B 重点关注 的危险物质及临界量,同时参照《企业突发环境事件风险分级方法》(HJ941-20 18)中突发环境事件风险物质及临界量清单,本项目涉及环境危险物质为柴油。

根据《建设项目环境风险评价技术导则》(HJ/T169-2018)中附录 B 中突。 发环境事件风险物质及临界量清单:柴油的临界量见下表。具体风险物质数量与 临界量比值见表 48。

序 危险物质 最大储存 物质类别 临界量t 储存位置 主要环境风险 号 名称 量t/a 泄露、火灾、爆 火化间储油罐 易燃液体 2 2500 柴油 1 所在区域

表 51 风险物质数量与临界量比值

经计算最大∑qi/Qi=0.0008<1,由此可知,该项目环境风险潜势为Ⅰ,风险评价等级为简要分析。

(2) 风险防范措施

针对柴油罐可能因管理和使用操作不当等情况引发的泄露问题,本项目应采取如下风险防范措施:

- ①建设方应配备符合生产或储存需要的管理人员和技术人员,有健全的安全管理制度:
 - ②杜绝设施的"跑、冒、滴、漏";

- ③本项目采用防腐防渗技术,对储油罐内外表面、做了防渗防腐处理,一旦发生溢出与渗漏事故,油品将由于防渗层的保护作用,积聚在储油区,对地下水不会造成影响。
- ④本项目对油罐内外壁进行防腐处理,可以有效避免储油罐发生泄漏事故, 防止油罐对土壤的污染。
 - (3) 事故三级防控体系
 - 一级防控:油罐液位计,避免油罐内柴油满溢;日常对油罐的检查制度;
 - 二级防控:油罐下方地面围堰;
- 三级防控:设置围堰外导流槽连接防渗地坑,通过围堰外侧导流槽可将油液排入防渗地坑。

7.环保投资

项目建设总投资 500 万元,实际环保投资共 240 万元,占总投资的 48%,具体环保投资见表 49。

表 52 环保投资一览表

———— 环境要 素	内容	规模及 数量	投资 (万元)
废气	火化机废气:通过2套"急冷装置+干法脱硫脱酸系统+布袋除尘+活性炭吸附"尾气治理系统处理后,统一经15m排气筒DA001排放	2	120
	焚烧废气:通过1套"急冷装置+干法脱硫脱酸系统+布袋除尘+活性炭吸附"尾气治理系统处理后,统一经15m排气筒DA002排放;	1	65
	12生肖祭祀炉尾气:通过1套"急冷装置+干法脱硫脱酸系统+布袋除尘+活性炭吸附"尾气治理系统处理后,统一经15m排气筒DA003排放	1	49
	食堂油烟:采用油烟净化器处理后,经排气烟道引至高于 房顶排放	1	1.5
噪声	隔声减震	/	1.7
田広	危险废物暂存间	1	2
固废	垃圾桶		0.2
地下水、 土壤	油罐下方设置防渗围堰	1	0.6
	合计		240

五、环境保护措施监督检查清单

内容要素	排放口(编 号、名称)/ 污染源	污染物 项目	环境保护措施	执行标准
	DA001/火化 机废气	颗粒物 SO ₂ NOx CO HCl 二噁英 汞	采用2套急冷装置+干法脱硫脱酸系统+布袋除尘+活性炭吸附器装置处理后,经15m高排气筒排放	《火葬场大气污染物排 放标准》(GB13801-20 15)中表2标准
	DA002/焚烧 炉废气	颗粒物 SO ₂ NOx CO HCl 二噁英	采用 1 套急冷装置+干 法脱硫脱酸系统+布袋 除尘+活性炭吸附器装 置处理后,经 15m 高排 气筒排放	《火葬场大气污染物排 放标准》(GB13801-20 15)中表3标准
大气环境	DA003/十二 生肖祭祀炉 废气	颗粒物 SO ₂ NOx CO HCl 二噁英	采用 1 套急冷装置+干法脱硫脱酸系统+布袋除尘+活性炭吸附器处理后,经 15m 高排气筒排放	《火葬场大气污染物排 放标准》(GB13801-20 15)中表3标准
	油罐废气	非甲烷总烃	无组织排放	厂界排放浓度执行《大气污染物综合排放标准》(GB16297-1996)中表2新污染源大气污染物排放限值二级标准;厂区内无组织排放监控点浓度执行《挥发性有机物无组织排放控制标准》(GB 37822-2019)表A.1中特别排放限值要求
	食堂油烟	油烟	食堂油烟经处理效率不 低于 60%的油烟净化器 处理后,经高于食堂屋 顶的排烟井排放。	《饮食行业油烟排放标 准》(GB18483-2001)
地表水环境	生活污水	CODer NH ₃ -N BOD ₅ SS 动植物油	生活污水一同进入排旱 厕处理后定期清掏	不外排

声环境	设备运行	Leq (A)	采用标准厂家生产的低 噪音机械。依靠墙体隔 声	工业企业厂界环境噪声 排放标准》(GB12348- 2008)中1类昼间标准			
电磁辐射	无	无	无	无			
	日常办公	生活垃圾	暂存于厂内垃圾桶,定 期委托环卫部门处置				
	火化机	火化骨灰	由各逝者家属装入骨灰 盒带走,葬入墓地	《一般工业固体废物贮存和填埋污染控制标			
	焚烧炉	焚烧灰渣	暂存于焚烧炉底部,定期 清掏后直接送至城市垃圾 填埋场				
固体废物	布袋除尘器	废布袋					
	布袋除尘器	回收粉尘					
	布袋除尘器	脱硫渣	暂存于危废暂存间内, 定期交有资质单位处	《危险废物贮存污染控 制标准》			
	活性炭吸附 装置	废活性炭	置。	(GR18597-2023)			
	火化机检修	废耐火材料					
土壤及地下 水污染防治 措施	/						
生态保护措 施	无						
	①建设方应配备符合生产或储存需要的管理人员和技术人员,有健全的安全管						
	理制度;						
	②杜绝设施的"跑、冒、滴、漏"。						
环境风险	③本项目采用防腐防渗技术,对储油罐内外表面、做了防渗防腐处理,一旦发						
防范措施	生溢出与渗漏事故,油品将由于防渗层的保护作用,积聚在储油区,对地下水						
	不会造成影响。						
	④本项目对油罐内外壁进行防腐处理,可以有效避免储油罐发生泄漏事故,防						
	止油罐对土壤的污染。						
	①设立环境保	护机构,并配适	置专门人员,制定切实有效	(的环保管理制度,并落			
	实到各部门、岗位。						
	②建立健全项目营运期的污染源和环保设施运行情况档案,按月统计污染物排						
其他环境	放情况并编制	好有关数据报	表并存档。对环保设施、资	と と と と と と と と と と と と と と と と と と と			
管理要求	 护工作,监督	检查高噪声设征	备的定期维护检修工作,并	上作好记录存档。建立厂			
	 内原料收集台	账,固体废物、	危险废物分类存放和管理	 台账、转移计划和联单、			
	申报登记和污						

③根据《排污许可管理条例》,按照监测计划开展定期监测,并通过其网站、 企业事业单位环境信息公开平台或者当地报刊等便于公众知晓的方式公开环境 信息。 ④ "三废"及噪声排放点按要求设置明显标志。废气排放口应设置便于采样、 监测的采样孔和采样平台; 废水排放口应设置监测采样点, 应按照国家规定设 置统一制作的环境保护图形标志牌。 ⑤按照《排污许可管理办法(试行)》及《固定污染源排污许可分类管理名录(2019 年版)》相关规定及时申请排污许可证。 ⑥做好环境保护,安全生产宣传以及相关技术培训等工作。 ⑦做好危险废物转运的管理台账。

六、结论

应的环境保护措施后,不利的环境影响可以减小到较小程度。 因此,建设单位项目在认真贯彻执行国家的环保法律、法规,认真落实环境影响评价报告表提出的污染防治对策的基础上,项目对环境所产生的负面影响可以得到有效控制,各项污染物均可达标排放,不会对周围环境产生较大影响。从环境保护的角度,本项目的建设可行。
响评价报告表提出的污染防治对策的基础上,项目对环境所产生的负面影响可以得到有效控制,各项污染物均可达标排放,不会对周围环境产生较大影响。从环境保
到有效控制,各项污染物均可达标排放,不会对周围环境产生较大影响。从环境保
护的角度,本项目的建设可行。

附表

建设项目污染物排放量汇总表

项目 分类	污染物名称	现有工程 排放量(固体废 物产生量)①	现有工程 许可排放 量②	在建工程 排放量(固体废物 产生量)③	本项目 排放量(固体废物 产生量)④	以新带老削減量(新建项目不填)⑤	本项目建成后 全厂排放量(固体废物 产生量)⑥	变化量 ⑦
	颗粒物	/	/	/	0.3057t/a	/	/	+0.3057t/a
	SO_2	/	/	/	0.2437t/a	/	/	+0.2437t/a
	NOx	/	/	/	1.9117t/a	/	/	+1.9117t/a
応 /=	HCl	/	/	/	0.1152t/a	/	/	+0.1152t/a
废气	СО	/	/	/	1.4129t/a	/	/	+1.4129t/a
	汞	/	/	/	0.000648t/a	/	/	+0.000648t/a
	二噁英	/	/	/	2.88×10 ⁻⁹ t/a	/	/	+2.88×10 ⁻⁹ t/a
	非甲烷总烃	/	/	/	0.0013t/a	/	/	+0.0013t/a
生活垃圾	生活垃圾	/	/	/	7. 1175t/a	/	/	+7. 1175t/a
一般工业 固体废物	火化骨灰	/	/	/	3t/a	/	/	+3t/a
	回收粉尘	/	/	/	5.8082t/a	/	/	+5.8082t/a
	脱硫渣	/	/	/	2.6t/a	/	/	+0.6t/a
在7人时·hm	废布袋	/	/	/	0.13t/a	/	/	+0.13t/a
危险废物	焚烧灰渣	/	/	/	1t/a	/	/	+1t/a
	废活性炭	/	/	/	4t/a	/	/	+4t/a
	废耐火材料	/	/	/	0.3t/a	/	/	+0.3t/a

注: 6=1+3+4-5; 7=6-1

委托书

辽宁中科尚环境技术咨询有限公司:

根据《中华人民共和国环境影响评价法》有关规定,本单位拟在 <u>辽宁省葫芦岛市南票区兰甲乡兰甲村</u>建设<u>《葫芦岛市南票区殡仪馆建</u> <u>设项目》</u>需要进行环境影响评价,并编制建设项目环境影响报告表, 现委托贵单位承担此工作。

单位名称(盖章): 葫芦岛市南票区殡仪馆

2023年9月27日

关于成立南票区殡葬管理所的批复 , 南人字(85)4号

民政局:

你局报来成立南票区殡葬管理所的报告已,收悉。经区长办公会议研究同意你局意见;设事业编制了人,该历意为保你局领导,但从目前祭政阶以可暂进2人,其它5人可逐步合齐。

南票区人事局

抄送:区安组织部、政府办、财政局、银行。

樊欣管属为政务下属联级自收(被事以单位, 独立核等。

中华人民共和国

크리 만리 다리 타리 타리 타리 타리 타리 타리 하기 하지 않는데 하기 하고

事业单位法人证书

统一社会信用代码 1122/114/04B5285005X5

称葫芦岛市南栗区殡仪馆 秦臣於明弘信 竹

나의 다면 다면

多芯 加瓜 # 铫

所南縣区兰和乡兰申村黑沟 生

法定代表人赵耕华

费来源经费自理 公

开办资金平664万元

举办单位葫芦岛市南票区社会保险事业和社会事务服务中心

登记管理机关

至2026年02月23日 有效期自2021年02月23日 请于每年3月31日前向登记管理机关报送上一年度的外使报告

国家事业单位登记管理局监制

) **පත පත පත ප**ත (10 11 1**1 18 පත පත පත** පත සහ

ව බ වන වන

锦西市人民政府文件征用土地批复

锦政地字〔199 3 〕33 号

南票区人民政府

根据 南政发[1993] 8 火葬场工程征地的请示 号来文、关语景区 批复如下:

-			
征地单位	南京区民政局	征地理由数量	建火葬场—0.3855公顷
县 (区)审批数量	0.3855公顷	其中: 梯地	0.1960公均
市审批数量	0.3855公顷	其中: 耕地	0.1960公场
被征用土地单位数量	兰甲屯乡兰甲屯村土	·地O.3855公顷。	
有关补偿、安置等问题的意见	按照《土地管理法》 安置要落实好。	有关规定补偿,劳	动力
备	1、由南票区土地局现2、工程竣工,检查验		

抄报:

省土地局

抄送:市财政局、公安局、劳动局、粮食局、粮食局、土地局、民政局、兰甲屯乡政府

一九人

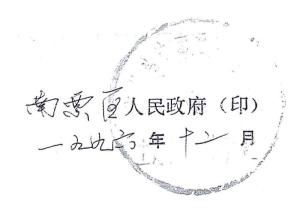
城市的土地属于国家所有。

农村和城市郊区的土地, 除由法律规定属于国家所有的以外, 属于集体所有; 宅基地和自留地、自留山, 也属于集体所有。

国家为了公共利益的需要,可以依照法律规定对土地实行征用。

任何组织或者个人不得侵占、买卖或者以 其它形式非法转让土地。土地的使用权可以依 照法律的规定转让。

一切使用土地的组织和个人必须合理地利用土地。


—摘自《中华人民共和国宪法》第十条

土地的所有权和使用权受法律保护,任何 单位和个人不得侵犯。

—摘自《中华人民共和国土地管理法》

第十一条

根据《中华人民共和国土地管理法》规定,为维护社会主义土地公有制,保护土地使用者的合法权益,由土地使用者申请,经调查审定,准予登记,发给此证。

本,至规种毒,邻党世。 西至暑此钱中丁止, 知道。 南至国墙外成上,郑铁路。 处型状的边 至 填 发 机 关

土	地使	用者	*	大学(Ídi	这	仪馆
+	地區	座 落	, i	为武	12 12		起乡芝甲村
土	地月	用途	/	入風	施	12/2)利地
地号	/-	(2	23)	-3		图号	53,50-61,75
<u>+</u>	总	、面	积	计千	零	急	杨雪平方来
地	独自使用	面	积	千年	零	冬	档意平方来
使	使用权	其建筑	中占地				ř
用	共	面	积				
者面面	有使	其中	面积				,
积	用权	分 推	建筑占地	,			
土地等级		1		报		使用期限	

面积单位:

检验报告

14	样品名称 送样人		联系电话	样品质量
孙少斌			13943800100	5. 0kg
编号		取样方式	依据标准	检验条件
2019001110		自采	GB/T212-2002	室温20相对湿度50%
	化集	2项目	化验结果	单项结论
工业分析	全	水份 (Mt) %	6.18	
	分析	i水份 (Mad)%	0.83	
		灰份(Ad)%	2, 49	
	空气干燥	基挥发分 (vad) %		
	干燥无灰	基挥发分(Vdaf)%	66.17	
	固	定碳(FCad)%	30.51	-
	焦	流特征(CRC)	4	12-11-11
元素	空气干燥	基全硫 (St, ad)%		
分析	角质	层厚度Y值(nm)		
	分析基高	位发热量(Qgr, d)	4679	
发热	收到基低	位发热量(Qnet, ar)	4226	
肽			(30)	1 4

电话 18844884222

18343865568 2019 7月1日

★此数据最终解释权归本中心所有

检测报告

委托单位:	<u>辽宁中科尚环境技术咨询有限公司</u>
	THE PROPERTY OF THE PROPERTY O
项目名称:	
检测类别:	<u>委托监测</u>
报告日期,	2023 5 18

辽宁禹宇环境检测有限公司

Yu Yu Environmental Testing Co., LTD of LiaoNing

声 明

- 1.报告无本公司"检验检测专用章"和"骑缝章"无效。
- 2.报告无编写人、审核人及授权签字人签字无效。
- 3.报告涂改无效,复制无效。
- 4.复制报告未重新加盖"检验检测专用章"无效。
- 5.检验项目中注"※"者,为分包检验项目。
- 6.委托现场检测仅对当时工况及环境状况有效。
- 7.对于委托单位自送样品,本公司只对自送样品分析数据负责。
- 8.委托方如对检测结果有异议,请于收到检测结果之日起十日内向本单位提出,逾期不予受理。

本机构通讯资料

公司全称: 辽宁禹宇环境检测有限公司

地址: 辽宁省葫芦岛市龙港区北港街道牛营村

邮编: 125000

电话: 0429-2569618

邮箱: lnyyhjjc@163.com

检测报告

	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1						Terrena men				
委托单位		辽宁中科尚环境技术咨询有限公司									
项目名	A 1996)	葫芦岛南票区殡仪馆项目									
受检单位	地址	辽宁省葫芦岛市南票区九龙街道兰甲屯村黑沟									
分包单	位	益铭检测技术服务(青岛)有限公司									
联系	1	宋洋		联系电话				188040	088100		
样品来	源	现场采样	É	样品;	状系	态	完好				
采样人	员	当	兆运、张	凯、王贝	宁、	、刘仁杰、	薛斌	は、王翁	f		
分析人	员			高阳、王	三静	D 、郑海东					
检测依据及构	验测仪器		详	见检测项目	目方	方法仪器一	览表				
	•		一、有组	1织废气							
采样日	期	2023.4.26-2	2023.4.27	检	验	日期	202	23.4.26	-2023.5.16		
采样位	置		п	G1-火	化	机进口					
工况参数	基准含氧	烟气含氧	温度	含湿量	i. E.	流速	烟	气流量	标干流量		
	量 (%)	量 (%)	(℃)	(%)		(m/s)	₹1	m ³ /h)	(m³/h)		
第一次		8.3	197.5	0.5		12.05	2	5453	3147		
第二次	11	8.5	197.8	0.5		12.35	2	5589	3222		
第三次		8.2	198.1	0.5	11.99		5426		3128		
检测项目				检测结	果						
	样品	品编号		YYJC20230836 02001		YYJC20230 02002	836	YYJC20230836 02003			
颗粒物	实测排放剂	浓度,mg/m	3 9	90.2		91.3		92.4			
	折算排放剂	农度,mg/m	3	71.0		73.0		72.2			
	排放速	排放速率, kg/h		0.28		0.29		0.29			
	实测排放剂	农度,mg/m	3	7		7		8			
二氧化硫	折算排放剂	农度,mg/m	3	6		6		6			
	排放速	率,kg/h	0	0.02		0.02		0.03			
	实测排放剂	农度,mg/m	3 1.	133.4		128.8		138.0			
氮氧化物	折算排放剂	农度,mg/m	3 10	105.0		103.0			107.8		
	排放速	率,kg/h	C	0.42		0.42			0.43		
	实测排放液	农度,mg/m	3 1	20		116			124		
一氧化碳	折算排放浴	农度,mg/m	3	94		93			97		
	排放速	率,kg/h	0	.38		0.37			0.39		
工况参数	基准含氧量(%)	烟气含氧量(%)	温度 (℃)	含湿量(%)		流速 烟气		〔流量 1 ³ /h)	标干流量 (m³/h)		
第一次	11	8.2	198.6	0.5		11.92		394	3107		

报告编号: YYJC-2023-第0836号

第二次		8.0	198.9	0.5		12.45		5634	3244	
第三次		8.0	195.6	0.5		12.17		5507	3193	
	样品编号			YYJC20230836		YYJC20230836		YYJC20230836		
				02067		02068		02069		
汞	To www.pro v	浓度,mg/n				6.32×10 ⁻³		6.15×10 ⁻³		
	Vince Village Color School	浓度,mg/n		4.74×10 ⁻³		4.86×10 ⁻³		4.73×10 ⁻³		
	排放速	逐率,kg/h		1,89×10 ⁻⁵		2.05×10 ⁻⁵		1.96×10 ⁻⁵		
	样品	品编号		YYJC20230836 02058		YYJC20230836 02059		1	YYJC20230836 02060	
氯化氢	实测排放剂	农度,mg/n		.02		9.24			8.89	
N/10T/	折算排放剂	农度,mg/m	n^3 7	.05		7.11			6.84	
	排放速	率,kg/h	0	.03		0.03			0.03	
工况参数	基准含氧	瓦量 (%)	烟气含氧	凤量 (%)		温度(℃))	标干流	是量(m³/h)	
第一次			1	5.8		62.6			2270	
第二次	11		1	5.6	65.4		2081			
第三次			1	15.6		66.8		2071		
			F230420	F230426H4E0101		F230426H4E0102		F230426H4E0103		
	实测排放浓度, ngTEQ/Nm³		0.	0.012		0.0092		0.0077		
※二噁英类	折算排放浓度,		0	0.023		0.017		0.014		
	ngTEQ/Nm³					Newschape Charles				
		, kgTEQ/h	2.72	2.72×10 ⁻¹¹		1.91×10 ⁻¹¹		1.59×10 ⁻¹¹		
采样位置		3-4-7-3 X E-3	V			化机出口				
工况参数	基准含氧量(%)	烟气含氧量(%)	温度 (℃)	含湿量 (%)				『流量 n³/h)	标干流量 (m³/h)	
第一次		7.8	88.7	0.3		10.37	4	693	3530	
第二次	11	7.5	89.1	0.3		10.11	4	575	3438	
第三次		7.5	88.2	0.3		10.24	4	634	3490	
检测项目		•		检测结果						
	样品	编号		YYJC20230836 02004		YYJC20230836 02005		YYJC20230836 02006		
颗粒物	实测排放浓	枚度,mg/m		26.6		28.4			27.6	
本火4至 1 23	折算排放浓	大度,mg/m	3 20	0.2		21.0			20.4	
	排放速	率,kg/h	0.	0.09		0.10		(0.10	
	实测排放浓	皮度,mg/m	3	1		3			5	
二氧化硫	折算排放浓	汉度,mg/m	3	3		2			4	
	排放速	率,kg/h	0.	01		0.01		(0.02	
気気ルルm	实测排放浓	汉度,mg/m ²	11	4.2		122.7		1	15.0	
氮氧化物 -	折算排放浴	《度,mg/m ²	86	.5		90.9			35.2	

				0.40	0.42			0.40		
	实测排放		100		112		108			
一氧化碳	折算排放		76		83			80		
		逐率,kg/h		0.35	\dagger	0.39			0.38	
林	格曼黑度,			<1		<1			<1	
1 CC - 00 W 1200	基准含氧	1	温度	含湿量	 量	流速	烟	 气流量 标干流量		
工况参数	量(%) 量(%)		(℃)	(%)		(m/s)		m³/h)	(m^3/h)	
第一次	7.8		88.0	0.3		10.03	2	1539	3422	
第二次	11 7.9		87.0	0.3		10.08	2	4561	3449	
第三次		7.6	88.6	0.3		11.01		1982	3749	
	样品	品编号	200 0 20 1890	20230836	7	YYJC20230	836	C Sec. Exercis	C20230836	
		农度,mg/m		2054 5×10 ⁻⁴		02055 6.39×10 ⁻⁴	1	-	02056 53×10 ⁻⁴	
汞		农度,mg/m 农度,mg/m		1×10^{-4}	+	4.88×10-4			87×10 ⁻⁴	
1	A CONTRACT AND A CONT	率,kg/h		7×10 ⁻⁶	+	2.20×10 ⁻⁶			45×10 ⁻⁶	
				20230836	Y	YJC20230		YYJC20230836		
	样品		_	02061		02062		CONTRACT OF SHARM CONTRACT OF SHARM SHARM SHOW		
氯化氢	实测排放剂	农度,mg/m	13 8	8.44		8.16		8.68		
	折算排放液	农度,mg/m	3 6	6.39		6.23		6.48		
	排放速率,kg/h		C	0.03		0.03		0.03		
工况参数	基准含氧	〔量(%)	烟气含金	烟气含氧量(%)				标干流量(m³/h)		
第一次			1	15.4		58.6		8	2369	
第二次	_	11	1	15.3		60.4		2150		
第三次			1	15.1		64.1		2125		
	样品	占编号	F230426	F230426H1E0101		F230426H1E0102		F230426H1E0103		
077 H. M		放浓度, Q/Nm³	0.0	0.0061		0.0059		0.0060		
※二噁英类	折算排		0.	0.011		0.010		0.010		
		, kgTEQ/h	1.45	1.45×10 ⁻¹¹		1.27×10 ⁻¹¹		1.28×10 ⁻¹¹		
		, , ,		G3-遗物	焚烷					
	基准含氧	烟气含氧	温度	含湿量		流速	烟生	〔流量	标干流量	
工况参数	量 (%)	量(%)	(℃)	(%)		(m/s)	(n	n³/h)	(m^3/h)	
第一次		14.3	34.1	0.3		15.57	7	046	6254	
第二次	11	14.0	34.3	34.3 0.3		15.65	7	082	6280	
第三次		14.2	34.5	34.5 0.3		15.76	7	132	6323	
检测项目	检测结果									
颗粒物	样品	编号	Authorities (China Carlot Carl	0230836 007	Y	YYJC20230836 02008			20230836 2009	
	实测排放浴	後度,mg/m ²	2:	5.6		26.3		27.1		

折算排放液度、mg/m³ 38.2 37.6 39.9 推放速率、kg/h											
一氧化硫 安測排放液度、mg/m³ 18 20 16		折算排放	浓度,mg/n	n ³	38.2		37.6			39.9	
二氧化硫 折算排放浓度,mg/m³ 27 29 24 排放速率,kg/h 0.11 0.13 0.10 突測排放浓度,mg/m³ 119.6 124.2 115.0 須氧化物 折算排放浓度,mg/m³ 178.5 177.4 169.1 排放速率,kg/h 0.75 0.78 0.73 交測排放浓度,mg/m³ 40 46 39 不可化碳 折算排放浓度,mg/m³ 60 66 57 排放速率,kg/h 0.25 0.29 0.25 排放速率,kg/h 0.25 0.29 0.25 採出編号 YYJC20230836 YYJC20230836 02066 02065 02066 安測排放浓度,mg/m³ 8.31 8.60 8.01 折穿排放浓度,mg/m³ 12.4 12.3 11.8 排放速率,kg/h 0.05 0.05 0.05 本格曼黑度,级 <1 <1 <1 <1 工況参数 基准含氧量 (%) 烟气含氧量 (%) 温度 (℃) 标干流量 (m³h) 第三次 採品編号 F230426H4E0201 F230426H4E0202 F230426H4E0203 实测排放浓度,ng/TEQ/Nm³ 0.0019 0.0028 0.0021 東排放浓度,ng/TEQ/Nm³ 0.0019 0.0028 0.0021 工况参数 基准含氧 烟气含氧 点		排放证	東率,kg/h	ļ	0.16		0.17			0.17	
# 排放速率、kg/h		实测排放	浓度,mg/n	n^3	18		20			16	
変調排放液度、mg/m³	二氧化硫	折算排放	浓度,mg/n	n^3	27		29			24	
新算排放液度,mg/m² 178.5 177.4 169.1		排放证	速率,kg/h		0.11		0.13			0.10	
#放速率、kg/h 0.75 0.78 0.73 交別排放液度、mg/m³ 40 46 39		实测排放	浓度,mg/n	n^3 1	19.6		124.2			115.0	
一氧化碳 实測排放浓度,mg/m³ 40 46 39 折算排放浓度,mg/m³ 60 66 57 排放速率,kg/h 0.25 0.29 0.25 样品编号 YYJC20230836 02064 02065 02066 02066 02066 实测排放浓度,mg/m³ 8.31 8.60 8.01 折算排放浓度,mg/m³ 12.4 12.3 11.8 排放速率,kg/h 0.05 0.05 0.05 基准含氧量(%) 基度(℃) 温度(℃) 标干流量(m³/h) 第一次 16.8 45.3 7194 第二次 16.8 45.3 7194 第二次 16.7 42.6 7075 第二次 样品编号 F230426H4E0201 F230426H4E0202 F230426H4E0203 实测排放浓度,ngTEQ/Nm³ 0.0019 0.0028 0.0021 工况参数 基准含氧 烟气含氧 温度 含和生产的工程的表现。如果技术的深度,ngTEQ/Nm³ 0.0045 0.0066 0.0043 工况参数 基准含氧 烟气含氧 温度 含和生产的工程的表现。如果有效的企作的企作的表现。如果有效的企作的企作的企作的表现。如果有效的企作的表现。如果有效的企作的企作的表现。如果有效的企作的企作的企作的。如果有效的企作的企作的企作的企作的企作的企作的表现。如果有效的企作的企作的企作的企作的企作的企作的企作的企作的企作的企作的企作的企作的。如果有效的企作的企作的企作的企作的企作的企作的企作的企作的企作的企作的企作的企作的企作的	氮氧化物	折算排放	浓度,mg/n	n^3 1	78.5		177.4			169.1	
一氧化碳		排放返	惠率,kg/h	().75		0.78			0.73	
#放速率、kg/h 0.25 0.29 0.25 詳しいでは、		实测排放	浓度,mg/n	1^3	40		46			39	
無化氢 样品編号 YYJC20230836 02064 YYJC20230836 02065 YYJC20230836 02066 YYJC20230836 02066 实测排放浓度, mg/m³ 8.31 8.60 8.01 折算排放浓度, mg/m³ 12.4 12.3 11.8 排放速率, kg/h 0.05 0.05 0.05 本格曼黑度, 级 <1	一氧化碳	折算排放	浓度,mg/n	1^3	60		66			57	
操品編号 02064 02065 02066 22066 202066 22 3 3 3 3 4 4 4 4 4 4	ľ	排放返	基率,kg/h	().25		0.29			0.25	
#放速率, kg/h 0.05 0.05 0.05		样,	品编号	-12 02/10/10 5300		3		0836 Y 50202 F23 11 烟气流 (m³/h 4098 4060 4037			
打算排放浓度,mg/m³	氯化氢	实测排放	浓度,mg/m	1^3 8	3.31		8.60	标干》 标干》	8.01		
本格曼黒度、级 名		折算排放	浓度,mg/m	1^3	2.4		12.3) 标干的	11.8		
工况参数 基准含氧量(%) 超气含氧量(%) 温度(℃) 标干流量(m³/h) 第二次 16.8		排放速	恵率,kg/h	(.05		0.05			0.05	
第二次 11 16.8 45.3 7194 第三次 16.7 42.6 7075 第三次 16.2 44.8 7023 詳品編号 F230426H4E0201 F230426H4E0202 F230426H4E0203 実測排放液度, ngTEQ/Nm³	林村	各曼黑度,	级		<1		<1			<1	
第三次 11 16.7 42.6 7075 第三次 16.2 44.8 7023 詳品編号 F230426H4E0201 F230426H4E0202 F230426H4E0203 実測排放液度, ngTEQ/Nm³	工况参数	基准含金	氧量 (%)	烟气含	瓦量 (%)		温度(℃))	标干流	ī量(m³/h)	
# 日	第一次			1	6.8		45.3		7194		
※二噁英类 样品编号 实测排放浓度,ngTEQ/Nm³ F230426H4E0201 F230426H4E0202 F230426H4E0203 新算排放浓度,ngTEQ/Nm³ 0.0019 0.0028 0.0021 采样位置 G4-12生肖祭祀炉入口 工况参数 基准含氧 烟气含氧 温度 含湿量 流速 烟气流量 标干流量 偏分) 量(%) (°C) (%) (m/s) (m³/h) (m³/h) 第一次 14.3 34.6 0.3 16.10 4098 3628 第二次 14.1 34.2 0.3 15.95 4060 3599 第三次 14.5 33.9 0.3 15.86 4037 3584 检测项目 检测结果 样品编号 YYJC20230836 02010 02011 02012 YYJC20230836 02010 02011 YYJC20230836 02012 实测排放浓度,mg/m³ 40.6 42.9 40.1 折算排放浓度,mg/m³ 60.6 62.2 61.7	第二次		11	1	6.7		42.6			7075	
※二噁英类 実測排放浓度, ngTEQ/Nm³ 0.0019 0.0028 0.0021 折算排放浓度, ngTEQ/Nm³ 0.0045 0.0066 0.0043 排放速率,kgTEQ/h 1.37×10-11 1.98×10-11 1.47×10-11 采样位置 G4-12生肖祭祀炉入口 工况参数 基准含氧 烟气含氧 量 (°C) (%) (m/s) (m³/h) (m³/h) 無度 (°C) (%) (m/s) (m³/h) (m³/h) (m³/h) (m³/h) 第一次 14.3 34.6 0.3 16.10 4098 3628 第二次 11 14.1 34.2 0.3 15.95 4060 3599 第三次 14.5 33.9 0.3 15.86 4037 3584 检测项目 检测结果 样品编号 YYJC20230836 02010 YYJC20230836 02011 YYJC20230836 02012 实测排放浓度,mg/m³ 40.6 42.9 40.1 折算排放浓度,mg/m³ 60.6 62.2 61.7	第三次			1	6.2		44.8			7023	
※二噁英类 ngTEQ/Nm³ 0.0019 0.0028 0.0021 折算排放浓度, ngTEQ/Nm³ 0.0045 0.0066 0.0043 排放速率, kgTEQ/h 1.37×10-11 1.98×10-11 1.47×10-11 采样位置 G4-12生肖祭祀炉入口 工况参数 基准含氧 烟气含氧 温度 含湿量 流速 烟气流量 标干流量量(%)量(%)(°C)(%)(m/s)(m³/h)(m³/h) 4098 3628 第二次 14.3 34.6 0.3 16.10 4098 3628 第二次 14.1 34.2 0.3 15.95 4060 3599 第三次 14.5 33.9 0.3 15.86 4037 3584 检测项目 检测结果 样品编号 YYJC20230836 02010 02011 02011 YYJC20230836 02012 YYJC20230836 02012 YYJC20230836 02012 实测排放浓度, mg/m³ 40.6 42.9 40.1 折算排放浓度, mg/m³ 60.6 62.2 61.7		样品	品编号	F23042	5H4E0201	F2	230426H4E	0202	F2304	26H4E0203	
大學學學 折算排放浓度, ngTEQ/Nm³ 0.0045 0.0066 0.0043 排放速率,kgTEQ/h 1.37×10 ⁻¹¹ 1.98×10 ⁻¹¹ 1.47×10 ⁻¹¹ 采样位置 G4-12生肖祭祀炉入口 工况参数 基准含氧 烟气含氧 量 (°C) (%) (m/s) (m³/h) (m³/h) 無度 (°C) (%) (m/s) (m³/h) (m³/h) 第一次 14.3 34.6 0.3 16.10 4098 3628 第二次 11 14.1 34.2 0.3 15.95 4060 3599 第三次 14.5 33.9 0.3 15.86 4037 3584 检测项目 检测结果 样品编号 YYJC20230836 02010 YYJC20230836 02011 YYJC20230836 02012 实测排放浓度,mg/m³ 40.6 42.9 40.1 折算排放浓度,mg/m³ 60.6 62.2 61.7	火 一晒苹米			0.0	0019		0.0028	0202 F2304 1 1. 烟气流量 (m³/h) 4098 4060 4037	C	0.0021	
排放速率, kgTEQ/h 1.37×10 ⁻¹¹ 1.98×10 ⁻¹¹ 1.47×10 ⁻¹¹	/ ※一 ^愢 央尖	折算排	放浓度,	0.0	0045		0.0066		C	0.0043	
工况参数				1.37	×10 ⁻¹¹		1.98×10 ⁻¹	1	1.4	17×10 ⁻¹¹	
上优参数 量(%) (℃) (%) (m/s) (m³/h) (m³/h) 第二次 14.3 34.6 0.3 16.10 4098 3628 第二次 11 14.1 34.2 0.3 15.95 4060 3599 第三次 14.5 33.9 0.3 15.86 4037 3584 检测项目 检测结果 样品编号 YYJC20230836 02010 YYJC20230836 02011 YYJC20230836 02012 实测排放浓度,mg/m³ 40.6 42.9 40.1 折算排放浓度,mg/m³ 60.6 62.2 61.7	采样位置	置		-	G4-12生肖	1祭	紀炉入口	0202 F2304 1 1. 烟气流量 (m³/h) 4098 4060 4037			
第一次	丁况参数	W AL 10	The second secon							22 mars an	
第二次 11 14.1 34.2 0.3 15.95 4060 3599 第三次 14.5 33.9 0.3 15.86 4037 3584 检测项目 检测结果 样品编号 YYJC20230836 02010 02011 02012 YYJC20230836 02010 02011 YYJC20230836 02012 实测排放浓度,mg/m³ 40.6 42.9 40.1 折算排放浓度,mg/m³ 60.6 62.2 61.7		量(%)				_		350			
第三次 14.5 33.9 0.3 15.86 4037 3584 检测项目 检测结果 样品编号 YYJC20230836 02010 YYJC20230836 02011 YYJC20230836 02012 实测排放浓度,mg/m³ 40.6 42.9 40.1 折算排放浓度,mg/m³ 60.6 62.2 61.7							220200		68 (W. 85)		
检测项目 检测结果 颗粒物 样品编号 YYJC20230836 02010 YYJC20230836 02011 YYJC20230836 02012 实测排放浓度,mg/m³ 40.6 42.9 40.1 折算排放浓度,mg/m³ 60.6 62.2 61.7		11									
模品编号 YYJC20230836 02010 YYJC20230836 02011 YYJC20230836 02012 实测排放浓度,mg/m³ 40.6 42.9 40.1 折算排放浓度,mg/m³ 60.6 62.2 61.7			14.5	33.9	The termination was -		15.86	4	037	3584	
颗粒物 样品编号 02010 02011 02012 实测排放浓度,mg/m³ 40.6 42.9 40.1 折算排放浓度,mg/m³ 60.6 62.2 61.7	检测项目				NOTE A TOP OF THE PARTY OF THE PARTY	_		1	*****		
折算排放浓度,mg/m ³ 60.6 62.2 61.7		样品	品编号			Y		336			
折算排放浓度, mg/m³ 60.6 62.2 61.7	颗粒物	实测排放剂	农度,mg/m	3 4	0.6		42.9	2 115.0 4 169.1 0.73 39 57 0.25 30836 YYJC20230836 02066 8.01 11.8 0.05 <1 C) 标干流量(m³/h 7194 7075 7023 E0202 F230426H4E020 8 0.0021 6 0.0043 -11 1.47×10-11 1	40.1		
排放速率,kg/h 0.15 0.15 0.14		折算排放剂	农度,mg/m	6	0.6		62.2		61.7		
		排放速	率,kg/h	0	15		0.15			0.14	

e do

报告编号: YYJC-2023-第0836号

	实测排放剂	浓度,mg/m	n^3 4	-0	43		38	
一氧化碳	折算排放剂	浓度,mg/m	n^3	50	62			58
	排放速	率,kg/h	0.	15	0.15			0.14
采样位置	置.		(G5-12生肖祭祀炉出口				
工况参数	基准含氧	烟气含氧	温度	含湿量	流速	烟气	气流量	标干流量
工机多奴	量(%)	量(%)	(℃)	(%)	(m/s)	(n	n ³ /h)	(m³/h)
第一次	2	13.9	32.3	0.2	12.22	- 3	110	2775
第二次	11	13.6	33.2	0.2	13.50	3	436	3056
第三次		13.7	33.2	0.2	13.37	3	403	3027
检测项目				检测结果	· ·			
	样品	品编号	YYJC20 020)230836)13	YYJC20230 02014	836		220230836 02015
颗粒物	实测排放液	农度,mg/m	3 22	1	23.4			22.8
1211212	折算排放剂	化度,mg/m	3 31	31.1 31.6				31.2
	排放速	率,kg/h	0.0	06	0.07			0.07
	实测排放沟	农度,mg/m	3 3	3	31	35		35
一氧化碳	一氧化碳 折算排放浓度,mg/m³		3 4	6	. 42	3 6	Y)	48
排放速率,kg/h		0.0)9	0.09		0.11		
林格	\$曼黑度,缘	及	<	1	<1			<1

注: 检测结果小于检出限报检出限值加"L",此数据仅对本次样品负责。

	二 、噪声								
	1、噪声检测检测期间气象参数详见附件表1								
	2、噪声								
	检测日期 2023.4.27								
检测项目	检测点位名称 (详见附图)	昼间dB(A)	夜间dB(A)						
	Z1东厂界 (N41.116651°,E120.740156°)	50.3	40.8						
厂界噪声	Z2南厂界 (N41.115423°,E120.739003°)	48.9	41.4						
) が深尸	Z3西厂界 (N41.116786°,E120.739689°)	48.9	41.2						
	Z4北厂界 (N41.117579°,E120.740816°)	50.2	41.7						

注: 此数据仅对本次样品负责。

			三、邽	环境空气	
采样	日期	20:	23.4.21-2023.4.28	检验日期	2023.4.21-2023.5.16
		1.3	环境空气检测期间	气象参数详见附件表2	
			2、环境空气	〔检测结果表1	
采	样日期			2023.4.21	
1	点位名称 见附图)		检测项目	样品编号	检测结果(mg/m³)
日均值			汞	YYJC2023083602023	3×10-6L
第一次	欠 K1厂址处		氯化氢	YYJC2023083602019	0.021
第二次			氯化氢	YYJC2023083602020	0.021
第三次			氯化氢	YYJC2023083602021	0.023
第四次			氯化氢	YYJC2023083602022	0.027
采	样日期			2023.4.22	•
	点位名称 见附图)		检测项目	样品编号	检测结果(mg/m³)
日均值			汞	YYJC2023083602028	3×10 ⁻⁶ L
第一次			氯化氢	YYJC2023083602024	0.02L
第二次	K1厂均	此处	氯化氢	YYJC2023083602025	0.023
第三次			氯化氢	YYJC2023083602026	0.025
第四次			氯化氢	YYJC2023083602027	0.029
采	样日期			2023.4.23	
	点位名称 见附图)		检测项目	样品编号	检测结果(mg/m³)
日均值			汞	YYJC2023083602033	3×10 ⁻⁶ L
第一次			氯化氢	YYJC2023083602029	0.024
第二次	K1厂址	上处 [氯化氢	YYJC2023083602030	0.024
第三次			氯化氢	YYJC2023083602031	0.030
第四次			氯化氢	YYJC2023083602032	0.034
采	样日期			2023.4.24	
	点位名称 见附图)		检测项目	样品编号	检测结果(mg/m³)
日均值			汞	YYJC2023083602038	3×10-6L
第一次			氯化氢	YYJC2023083602034	0.023
第二次	K1厂址	:处	氯化氢	YYJC2023083602035	0.024
第三次			氯化氢	YYJC2023083602036	0.028
第四次			氯化氢	YYJC2023083602037	0.031

报告编号: YYJC-2023-第0836号

	2022 4 26			
	2023.4.26			
检测项目	样品编号	检测结果(mg/m³)		
汞	YYJC2023083602043	3×10-6L		
※二噁英类	K230426H7E0101	0.0072 pgTEQ/Nm ³		
氯化氢 YYJC202 址处		0.02L		
氯化氢	YYJC2023083602040	0.023		
氯化氢	YYJC2023083602041	0.025		
氯化氢	YYJC2023083602042	0.022		
	2023.4.27			
检测项目	样品编号	检测结果(mg/m³)		
汞	YYJC2023083602048	3×10-6L		
※二噁英类	K230427H7E0101	0.012 pgTEQ/Nm ³		
氯化氢	YYJC2023083602044	0.024		
氯化氢 YYJC2023083602045		0.026		
氯化氢	YYJC2023083602046	0.027		
氯化氢	YYJC2023083602047	0.030		
2023.4.28				
检测项目	样品编号	检测结果(mg/m³)		
汞	YYJC2023083602053	3×10 ⁻⁶ L		
※二噁英类	K230428H7E0101	0.0069 pgTEQ/Nm ³		
氯化氢	YYJC2023083602049	0.029		
氯化氢	YYJC2023083602050	0.029		
氯化氢	YYJC2023083602051	0.024		
氯化氢	YYJC2023083602052	0.024		
	 表 ※ 無 英 类 氯 氯 氯 氢 氯 氯 氯 氯 氯 氯 氯 氯 氯 氯 氯 氯 氯 氯 氯 氯 氯 氯 氯	汞YYJC2023083602043※二噁英类K230426H7E0101氯化氢YYJC2023083602039氯化氢YYJC2023083602040氯化氢YYJC2023083602041氯化氢YYJC20230836020422023.4.27检测项目样品编号汞YYJC2023083602048※二噁英类K230427H7E0101氯化氢YYJC2023083602044氯化氢YYJC2023083602045氯化氢YYJC2023083602046氯化氢YYJC20230836020472023.4.28检测项目样品编号汞YYJC2023083602053※二噁英类K230428H7E0101氯化氢YYJC2023083602049氯化氢YYJC2023083602050氯化氢YYJC2023083602051氯化氢YYJC2023083602052		

注:检测结果小于检出限报检出限值加"L",此数据仅对本次样品负责。

		四、检测项目方	法仪器一览表		
类别	检测项目	检测依据	检测仪器	检出限	采样方法
	氯化氢	固定污染物排气中氯化氢的测定 硫氰酸汞分光光度法 HJ/T27-1999	紫外分光光度计 SP 752 YYYQ-007	0.9mg/m ³	
	BITTALA, d.L.	固定污染源废气 低浓度颗粒物的测定 重量法 HJ 836-2017	十万分之一天平 MS 105 YYYQ-008	1.0mg/m ³	
	颗粒物	固定污染源排气中颗粒物测定与气态污染物采样方法 GB/T 16157-1996 (修改单)	十万分之一天平 MS 105 YYYQ-008	1	
	二氧化硫	固定污染源废气 二氧化硫的测定 定电位电解法 HJ 57-2017	自动烟尘烟气测试仪 GH-60E YYYQ-082 GH-60E YYYQ-078	3mg/m ³	
	氮氧化物 一氧化碳	固定污染源废气 氮氧化物的测定 定电位电解法 HJ 693-2014	自动烟尘烟气测试仪 GH-60E YYYQ-082 GH-60E YYYQ-078	3mg/m³	固定源废气监
有组织		固定污染源废气 一氧化碳的测定 定电位电解法 HJ 973-2018	自动烟尘烟气测试仪 GH-60E YYYQ-082 GH-60E YYYQ-078	3mg/m ³	
废气	林格曼黑度	固定污染源排放烟气黑度的测定 林格曼烟气黑度图法 HJ/T398-2007	测烟望远镜 HC-10型10*50 YYYQ-046	/	测技术规范 HJ/T 397-2007
	汞及其化合 物	原子荧光分光光度法 《空气和废气监测分析方法》(第 四版 增补版)国家环境保护局 (2007年)第五篇 第三章 七(二)	原子荧光光度计 AFS-8510 YYYQ-002	3×10 ⁻³ μg/m ³	
	温度	固定污染源排气中颗粒物测定与气态污染物采样方法 5.1 排气温度的测定 GB/T 16157-1996	自动烟尘烟气测试仪 GH-60E YYYQ-082 GH-60E YYYQ-078	1	
	含湿量	固定污染源排气中颗粒物测定与气态污染物采样方法 5.2 排气中水分含量的测定 GB/T 16157-1996	自动烟尘烟气测试仪 GH-60E YYYQ-082 GH-60E YYYQ-078	1	
	烟气流量	固定污染源排气中颗粒物测定与气态污染物采样方法 7 排气流速、流量的测定 GB/T 16157-1996	自动烟尘烟气测试仪 GH-60E YYYQ-082 GH-60E YYYQ-077 GH-60E YYYQ-078 GH-2	/	

			YYYQ-023		
	烟气动压	固定污染源排气中颗粒物测定与气态污染物采样方法 7.5.1 测量气流的动压 GB/T 16157-1996	自动烟尘烟气测试仪 GH-60E YYYQ-082 GH-60E YYYQ-078	/	
	烟气含氧量	《空气和废气监测分析方法》(第四版增补版)国家环境保护总局(2003)第五篇烟气含氧量第二章六、(三)	自动烟尘烟气测试仪 GH-60E YYYQ-082 GH-60E YYYQ-078	/	
	※二噁英	环境空气和废气 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨 质谱仪 HJ 77.2-2008	气相色谱-双聚焦高分辨 磁质谱 DFS	/	
	氯化氢	环境空气和废气 氯化氢的测定 离子色谱法 HJ549-2016	紫外分光光度计 SP 752 YYYQ-007	0.02mg/m ³	
环境空	汞及其化合 物	原子荧光分光光度法 《空气和废气监测分析方法》(第 四版 增补版)国家环境保护局 (2007年)第五篇 第三章 七(二)	原子荧光光度计 AFS-8510 YYYQ-002	3×10 ⁻³ μg/m ³	环境空气质量 手工监测技术 规范HJ 194-2017
	※二噁英	环境空气和废气 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨 质谱法 HJ 77.2-2008	磁质谱 DFS	/	.5.20.7
噪声	厂界噪声	工业企业厂界环境噪声 排放标准 GB 12348-2008	声级计,AWA6228+ YYYQ-032 声级校准器, AWA6021A YYYQ-034 风速仪,DEM6 YYYQ-048	1	同检测依据

五、质量保证与质量控制

- 1、本次检测的所有项目均已通过省级检验检测机构资质认定,取得CMA资质,分析方法采用相关部门颁布的现行有效标准方法。
- 2、检测人员经培训合格,均持证上岗。
- 3、检测所用仪器设备均已检定/校准,并在有效期内使用。
- 4、严格执行原始记录二级审核、检测报告三级审核制度。

报告结束

编写人: 王铁锋

审核人: 本作 二

授权签字人: 弟 孙

签发日期: 2013.5.18

报告编号: YYJC-2023-第0836号

附件:

表1

	噪声检测期间气象参数								
采样日期	昼夜	天气情况	风向	风速, m/s	气温,℃	气压, Kpa			
2022 4 27	昼间	多云	东风	1.8	14.9	100.8			
2023.4.27	夜间	多云	东风	1.4	12.1	101.2			

表2

	环境空气检测期间气象参数									
检测日期	检测时间	天气情况	风向	风速,m/s	气温,℃	气压,Kpa				
2023.4.21	13:55	多云	西风	1.6	16.1	101.1				
2023.4.22	13:55	晴	北风	1.4	18.6	100.9				
2023.4.23	13:55	多云	西风	1.0	17.6	100.7				
2023.4.24	13:55	多云	西南风	1.8	16.2	101.0				
2023.4.26	13:55	多云	西南风	1.7	14.7	100.9				
2023.4.27	13:55	晴	南风	1.4	16.4	100.9				
2023.4.28	13:55	多云	南风	1.0	14.7	101.4				

委托单位:	辽宁中科尚环境技术咨询有限公司	
		9 (c) (d)
项目名称:	葫芦岛南票区殡仪馆项目	
	41.474.	
检测类别:	委托监测	
	,	
报告日期:	2023.6.2	

辽宁禹宇环境检测有限公司

Yu Yu Environmental Testing Co., LTD of LiaoNing

T) HHE 报告编号: YYJC-2023-第0836号-02

声 明

- 1.报告无本公司"检验检测专用章"和"骑缝章"无效。
- 2.报告无编写人、审核人及授权签字人签字无效。
- 3.报告涂改无效,复制无效。
- 4.复制报告未重新加盖"检验检测专用章"无效。
- 5.检验项目中注"※"者,为分包检验项目。
- 6.委托现场检测仅对当时工况及环境状况有效。
- 7.对于委托单位自送样品,本公司只对自送样品分析数据负责。
- 8.委托方如对检测结果有异议,请于收到检测结果之日起十日内向本单位 提出,逾期不予受理。

本机构通讯资料

公司全称: 辽宁禹宇环境检测有限公司

地址: 辽宁省葫芦岛市龙港区北港街道牛营村

邮编: 125000

电话: 0429-2569618

邮箱: lnyyhjjc@163.com

委托单位 辽宁中科尚环境技术咨询有限公司							
I	页目名称	古	有芦岛南	票区殡仪馆项目			
受核	企单位地址	辽宁省葫芦	岛市南票	区九龙街道兰	甲屯村黑泽	勾	
	联系人	宋洋	联	系电话	18804	088100	
检	企测人员		萨菊	、王贝宁			
		-, 1	噪声				
	检测	日期		2023.	6.1		
松	企测项目	检测点位名称		昼间	Leq, dB(A)	
声环均	竟质量噪声	厂界南侧40m友 (N41.114663°,E120.7		69°) 41			
		二、检测项目方	法仪器	一览表			
类别	检测项目	检测依据		检测仪器	检出限	· 采样 方法	
噪声 声环境质量 声环境质量标准 GB 3096-2008				X计,AWA6228+ YYYQ-033 与级校准器, AWA6021A YYYQ-034 、速仪,DEM6 YYYQ-048	/	同检测依 据	
		一	一一一		1	1	

三、质量保证与质量控制

- 1、本次检测的所有项目均已通过省级检验检测机构资质认定,取得CMA资质,分析方法 采用相关部门颁布的现行有效标准方法。
- 2、检测人员经培训合格,均持证上岗。
- 3、检测所用仪器设备均已检定/校准,并在有效期内使用。
- 4、严格执行原始记录二级审核、检测报告三级审核制度。

报告结束

编写人: 王铁锋

审核人: 本成 二

授权签字人: 种间

签发日期: 2003.6.2

报告编号: YYJC-2023-第0836号-02

附件:

表1

		噪声	检测期间气象	2参数		
采样日期	昼夜	天气情况	风向	风速, m/s	气温,℃	气压, Kpa
2023.6.1	晴	多云	东风	1.7	20.9	100.9

委托单位:	辽宁中科尚环境技术咨询有限公司
项目名称:	葫芦岛市南票区殡仪馆建设环评监测项目
	オプンポート トラ ルト 2回り
检测类别:	环评本底监测
报告日期:	2023.8.23

辽宁禹宇环境检测有限公司

Yu Yu Environmental Testing Co., LTD of LiaoNing

声 明

- 1.报告无本公司"检验检测专用章"和"骑缝章"无效。
- 2.报告无编写人、审核人及授权签字人签字无效。
- 3.报告涂改无效,复制无效。
- 4.复制报告未重新加盖"检验检测专用章"无效。
- 5.检验项目中注"※"者,为分包检验项目。
- 6.委托现场检测仅对当时工况及环境状况有效。
- 7.对于委托单位自送样品,本公司只对自送样品分析数据负责。
- 8.委托方如对检测结果有异议,请于收到检测结果之日起十日内向本单位 提出,逾期不予受理。

本机构通讯资料

公司全称: 辽宁禹宇环境检测有限公司

地址: 辽宁省葫芦岛市龙港区北港街道牛营村

邮编: 125000

电话: 0429-2569618

邮箱: lnyyhjjc@163.com

委托单位		辽宁中科尚环境技术咨询有限公司					
项目名称		葫芦岛市南票区殡仪馆建设环评监测项目					
受检单	单位地址	辽宁省葫	辽宁省葫芦岛市南票区九龙街道兰甲屯村黑沟				
分包		益铭	检测技术服务(青岛)有	限公司			
联	系人	宋洋	联系电话	18804088100			
样品	1来源	现场采样	样品状态	完好			
采柱	羊人员	Ī	韩阳、李宏旭、王新、李泽	每			
分析	斤人员	į	郑海东、王浩、王静、张门	NI N			
检测依据	及检测仪器) ²	羊见检测项目方法仪器一览	 危表			
		一、五	不境空气				
采样	羊日期	2023.8.2-2023.8.8	检验日期	2023.8.2-2023.8.8			
	1	环境空气检测期间	气象参数详见附件表1				
		2、环境空气	气检测结果表1				
采	样日期		2023.8.2				
	点位名称 见附图)	检测项目	样品编号	检测结果 (mg/m³)			
第一次			YYJC2023125602001	1.05			
第二次	厂址主导下风	나 ㅁ 쌍 쏘 顷	YYJC2023125602002	1.42			
第三次	向处	非甲烷总烃	YYJC2023125602003	1.79			
第四次			YYJC2023125602004	1.66			
采	样日期	2023.8.3					
0.000.000.000	点位名称 见附图)	检测项目	样品编号	检测结果(mg/m³)			
第一次			YYJC2023125602005	1.01			
第二次	 厂址主导下风	그는 다그 나는 쏘 나기	YYJC2023125602006	1.23			
第三次	向处	非甲烷总烃	YYJC2023125602007	1.88			
第四次			YYJC2023125602008	1.75			
			2023.8.4	'			
	点位名称 见附图)	检测项目	样品编号	检测结果(mg/m³)			
第一次	3-2		YYJC2023125602009	1.02			
第二次	厂址主导下风	네- ㄸ ㅆ٠ 쏘	YYJC2023125602010	1.32			
第三次	向处	非甲烷总烃	YYJC2023125602011	1.87			
第四次	**		YYJC2023125602012	1.68			

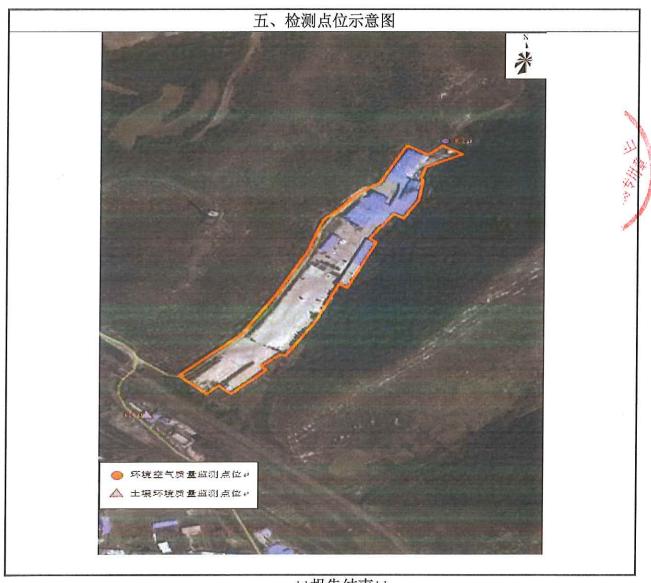
报告编号: YYJC-2023-第1256号

采样日期			2023.8.5			
检测点位名称 (详见附图)		检测项目	样品编号	检测结果(mg/m³)		
第一次			YYJC2023125602013	1.19		
第二次	厂址主导下风	北田岭光烬	YYJC2023125602014	1.45		
第三次	向处	非甲烷总烃	YYJC2023125602015	1.72		
第四次			YYJC2023125602016	1.53		
采	样日期		2023.8.6			
APERT SALES	点位名称 见附图)	检测项目	样品编号	检测结果(mg/m³)		
第一次			YYJC2023125602017	1.01		
第二次	厂址主导下风	非甲烷总烃	YYJC2023125602018	1.24		
第三次	向处	非中风心灶	YYJC2023125602019	1.46		
第四次			YYJC2023125602020	1.36		
采	样日期	2023.8.7				
. = 100 JY	点位名称 见附图)	检测项目	样品编号	检测结果(mg/m³)		
第一次			YYJC2023125602021	1.14		
第二次	厂址主导下风	非甲烷总烃	YYJC2023125602022	1.39		
第三次	向处	非 中,	YYJC2023125602023	1.95		
第四次			YYJC2023125602024	1.56		
采	样日期		2023.8.8			
检测点位名称 (详见附图)		检测项目	样品编号	检测结果(mg/m³)		
第一次			YYJC2023125602025	1.09		
第二次	厂址主导下风	北田岭当风	YYJC2023125602026	1.30		
第三次	向处	非甲烷总烃	YYJC2023125602027	1.78		
第四次			YYJC2023125602028	1.63		

注: 此数据仅对本次样品负责。

AL ALL MARKET AND ADDRESS OF THE PARTY OF TH		 、土壤	
采样日期	2023.8.2	检验日期	2023.8.2-2023.8.21
	1、土壤	检测结果表1	
点位绍	5. 结坐标	层次深度	样品编号
E 120.737557°	N 41.114643°	0-0.2m	YYJC2023125604001
检测项目	单位	检	测结果
※二噁英类	ngTEQ/kg		1.5
砷	mg/kg		5.5
镉	mg/kg		15.2
六价铬	mg/kg		0.5L
铜	mg/kg		13.8
铅	mg/kg		18
汞	mg/kg		0.589
镍	mg/kg		14
氯甲烷	μg/kg		1.0L
氯乙烯	μg/kg		1.0L
1,1-二氯乙烯	μg/kg		1.0L
二氯甲烷	μg/kg		1.5L
反式-1,2-二氯乙烯	μg/kg		1.4L
1,1-二氯乙烷	μg/kg		1.2L
顺式-1,2-二氯乙烯	μg/kg		1.3L
氯仿	μg/kg		1.1L
1,1,1-三氯乙烷	μg/kg		1.3L
四氯化碳	μg/kg		1.3L
苯	μg/kg		1.9L
1,2-二氯乙烷	μg/kg		1.3L
三氯乙烯	μg/kg		1.4L
1,2-二氯丙烷	μg/kg		1.1L
甲苯	μg/kg		1.3L
1,1,2-三氯乙烷	μg/kg		1.2L
四氯乙烯	μg/kg		1.4L
氯苯	μg/kg		1.2L
1,1,1,2-四氯乙烷	μg/kg		1.2L
乙苯	μg/kg		1.2L
间,对-二甲苯	μg/kg		1.2L
邻-二甲苯	μg/kg		1.2L
苯乙烯	μg/kg		1.1L
1,1,2,2-四氯乙烷	μg/kg		1.2L
1,2,3-三氯丙烷	μg/kg		1.2L

1,4-二氯苯	μg/kg	1.5L
1,2-二氯苯	μg/kg	1.5L
苯胺	mg/kg	0.01L
2-氯苯酚	mg/kg	0.06L
硝基苯	mg/kg	0.09L
萘	mg/kg	0.09L
苯并(a)蒽	mg/kg	0.1L
崫	mg/kg	0.1L
苯并(b) 荧蒽	mg/kg	0.2L
苯并(k)荧蒽	mg/kg	0.1L
苯并(a)芘	mg/kg	0.1L
茚并(1,2,3-cd)芘	mg/kg	0.1L
二苯并(a,h)蒽	mg/kg	0.1L


注: 检测结果小于检出限报检出限值加"L", 此数据仅对本次样品负责。

	三、检测项目方法仪器一览表						
类别	检测项目	检测依据	检测仪器	检出限	采样方法		
环境空	非甲烷总烃	环境空气 总烃、甲烷和非甲烷总烃的测定 气相色谱法 HJ 604-2017	气相色谱仪 GC 9790 II YYYQ-004	0.07mg/m ³	环境空气质量手工监测技术规范HJ 194-2017		
	※二噁英类	土壤和沉积物 二噁英类的测定 同位 素稀释高分辨气相色谱-高分辨质谱法 HJ 77.4-2008	气相色谱-双聚焦高分 辨磁质谱DFS	/			
	砷	土壤和沉积物 12种金属元素的测定	电感耦合等离子体质	0.6mg/kg			
	镉	王水提取-电感耦合等离子体质谱法 HJ 803-2016	谱仪7800ICP-MS YYYQ-066	0.07mg/kg			
	六价铬	土壤和沉积物 六价铬的测定 碱溶液提取-火焰原子吸收分光光度法 HJ 1082-2019	原子吸收分光光度计 SP-3520AA YYYQ-001	0.5mg/kg			
	铜	土壤和沉积物 12种金属元素的测定	电感耦合等离子体质	0.5mg/kg			
	铅	王水提取-电感耦合等离子体质谱法 HJ 803-2016	谱仪7800ICP-MS YYYQ-066	2mg/kg			
土壤	汞	土壤和沉积物 汞、砷、硒、铋、锑的测定 微波消解/原子荧光法 HJ 680-2013		0.002mg/kg	土壤环境监测技术规范		
	镍	土壤和沉积物 12种金属元素的测定 王水提取-电感耦合等离子体质谱法 HJ 803-2016	电感耦合等离子体质 谱仪7800ICP-MS YYYQ-066	2mg/kg	HJ/T166-20 04		
	四氯化碳			1.3µg/kg			
	氯仿			1.1μg/kg			
	氯甲烷			1.0μg/kg			
-	1,1-二氯乙烷	土壤和沉积物 挥发性有机物的测定吹	气相色谱质谱联用仪	1.2μg/kg			
-	1,2-二氯乙烷	扫捕集/气相色谱-质谱法	8890/5977B	1.3μg/kg			
	1,1-二氯乙烯 顺-1,2-二氯乙	НЈ 605-2011	YYYQ-051	1.0μg/kg			
2.	顺-1,2-—就乙 烯		5	1.3µg/kg			
	反-1,2-二氯乙 烯			1.4μg/kg			

二氯甲烷			1.5μg/kg	
1,2-二氯丙烷			1.1μg/kg	
1,1,1,2-四氯			1.2μg/kg	
乙烷	_			
1,1,2,2-四氯乙烷			1.2μg/kg	
四氯乙烯			1.4μg/kg	
1,1,1-三氯乙 烷			1.3μg/kg	
1,1,2-三氯乙 烷			1.2μg/kg	
三氯乙烯			1.4μg/kg	
1,2,3-三氯丙烷			1.2μg/kg	
氯乙烯			1.0μg/kg	
苯			1.9μg/kg	
氯苯			1.2μg/kg	
1,2-二氯苯			1.5µg/kg	
1,4-二氯苯			1.5μg/kg	
乙苯			1.2µg/kg	
苯乙烯	,		1.1µg/kg	
甲苯			1.3μg/kg	
间二甲苯+对 二甲苯			1.2μg/kg	
邻二甲苯		*	1.2μg/kg	
2-氯苯酚			0.06mg/kg	
硝基苯			0.09mg/kg	
萘			0.09mg/kg	
苯并(a)蒽			0.1mg/kg	
崫	土壤和沉积物	气相色谱质谱联用仪	0.1mg/kg	
苯并(b)荧蒽	半挥发性有机物的测定 气相色谱-质谱法	8890/5977B	0.2mg/kg	
苯并(k)荧蒽		YYYQ-051	0.1mg/kg	
苯并(a)芘			0.1mg/kg	
茚并(1,2,3-cd) 芘			0.1mg/kg	
二苯并(a,h) 蒽			0.1mg/kg	
苯胺	土壤和沉积物 苯胺的测定 气相色谱- 质谱法 GFT-SOP001-2020	气相色谱质谱联用仪 8890/5977B YYYQ-051	0.01mg/kg	

四、质量保证与质量控制

- 1、本次检测的所有项目均已通过省级检验检测机构资质认定,取得CMA资质,分析方法采用相关部门颁布的现行有效标准方法。
- 2、检测人员经培训合格,均持证上岗。
- 3、检测所用仪器设备均已检定/校准,并在有效期内使用。
- 4、严格执行原始记录二级审核、检测报告三级审核制度。

报告结束

编写人: 王铁锋

审核人: 李徒 二

授权签字人: 无明远

签发日期: 203.8.23

报告编号: YYJC-2023-第1256号

附件:

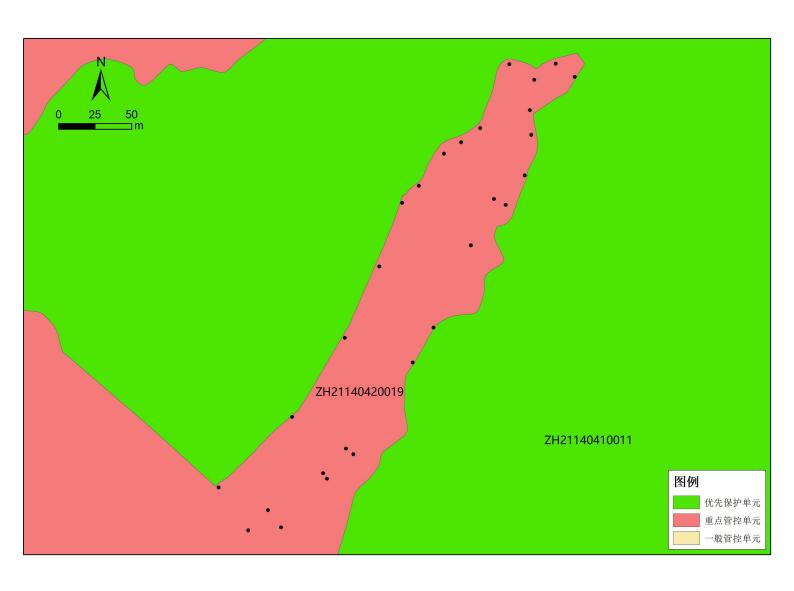
表1

		环境空	区气检测期间	气象参数		
检测日期	检测时间	天气情况	风向	风速,m/s	气温,℃	气压, Kpa
2023.8.2	13:25	晴	西南风	0.9	31.8	100.5
2023.8.3	09:55	晴	西南风	1.2	29.6	100.1
2023.8.4	10:25	晴	西南风	2.0	30.6	99.7
2023.8.5	09:55	晴	东北风	1.6	28.2	100.2
2023.8.6	9:40	晴	东北风	1.4	27.6	101.0
2023.8.7	10:10	晴	东北风	2.1	26.2	100.7
2023.8.8	10:25	晴	东北风	1.7	26.6	100.5

"三线一单"管控单元查询申请表

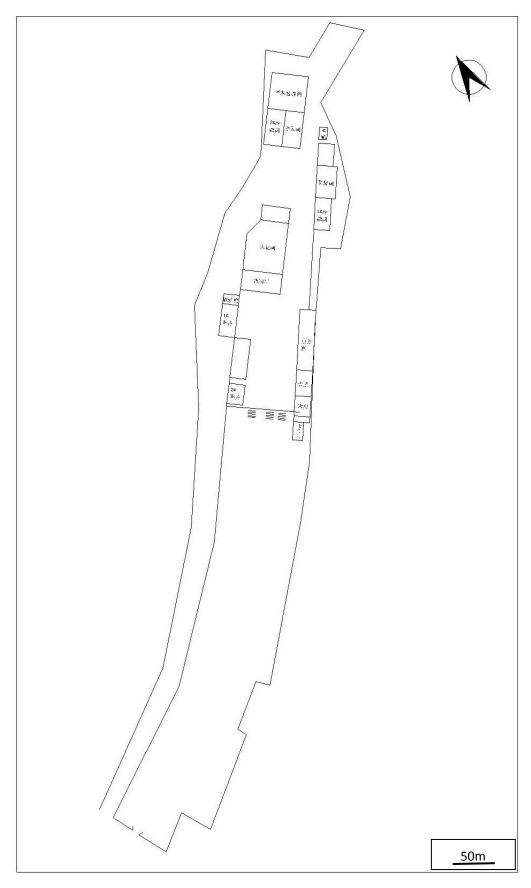
	~	十一百江千儿旦即中周衣
申请查	至询单位(盖章)	南票市殡仪馆
	联系人姓名	甄重 电话 3841833295
	申请日期	2023 年 6 月 1 日
	项目名称	南票市殡仪馆建设项目
	项目概况	南票市殡仪馆始建于1985年,现有占地面积17476m², 年火化量最大可达2000具。
查询项目	国家大地坐标系)	1 120.74054395,41.11772321 15 120.73899900,41.11521803 2 120.74030121,41.11733295 16 120.73918675,41.11536823 3 120.74014564,41.11724578 17 120.73924844,41.11533336 4 120.74000483,41.11717738 18 120.73973661,41.11589394 5 120.73979829,41.11698024 19 120.73990827,41.11610852 6 120.73947107,41.11648679 20 120.74021806,41.11689575 8 120.73918675,41.11604951 22 120.74050506,41.11685954 9 120.73875224,41.11556671 23 120.74066197,41.11703925 10 120.73838611,41.11487068 25 120.74071829,41.11728869 11 120.73854705,41.11499406 26 120.74070891,41.11744024 12 120.73865433,41.11488677 27 120.74092214,41.11772455 14 120.73902984,41.11518450 28 120.74074512,41.11762665
	shp 格式文件	见附件
业务部门意见		

回执: <u>南票市殡仪馆 (单位)</u>的申请表收悉。经查询,项目所在环境管控单元类别为: <u>重点管控区</u> (优先保护区、重点管控区或一般管控区);

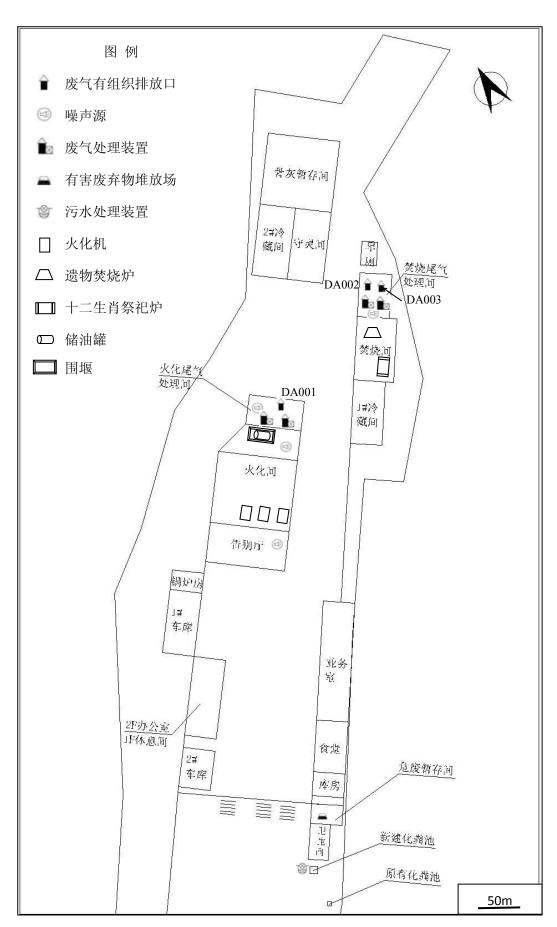

环境管控单元编码为: ZH21140420019。

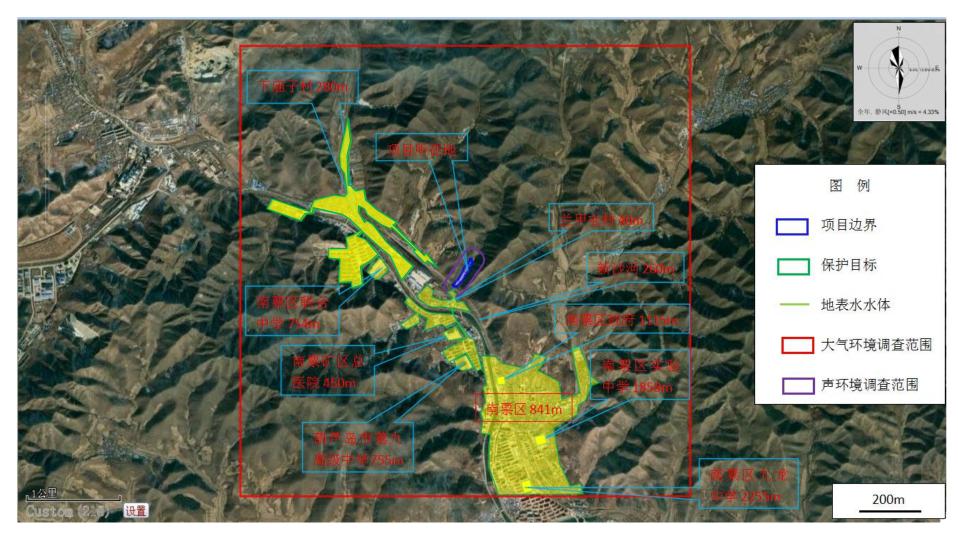
(查询部门盖章) 2023 年 6 月 1 日

查询人: 周慧晶

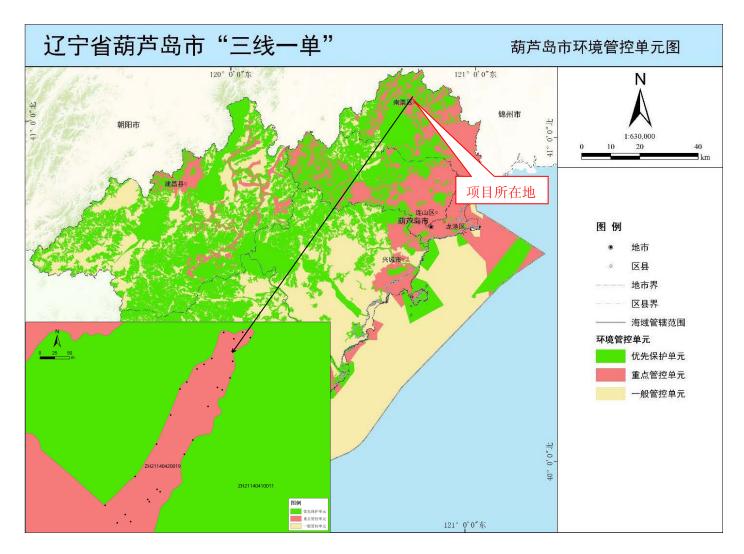

查询日期: 2023 年 6 月 1 日

(本申请表一式两份,一份回执,一份归档)

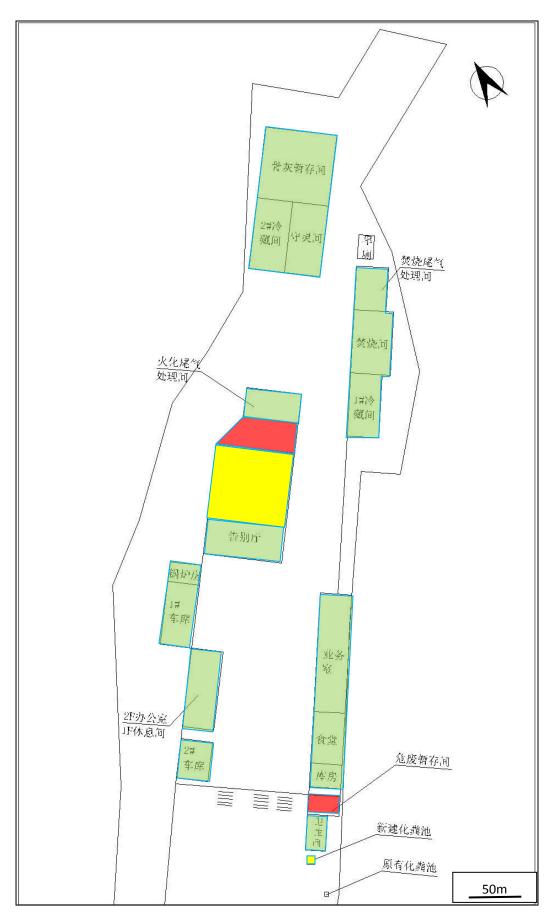



附图1 地理位置图

附图 2 总平面布置图


附图 3 主要建筑物平面布置图

附图 4 调查范围与保护目标图


附图 5 现势地形图

附图 6 项目与三线一单位置关系图

附图 7 监测点位示意图

附图 8 分区防渗图

葫芦岛市南票区殡仪馆建设项目 **大气专项评价**

建设单位: 葫芦岛市南票区殡仪馆

编制单位: 辽宁中科尚环境技术咨询有限公司

2023年11月

葫芦岛市南票殡仪馆始建于 1985 年,占地面积 17476m²,现有高级燃油火化机 3 台,遗物祭品焚烧炉 1 台,十二生肖祭祀炉 1 套,年火化量最大可达 2000 具。由于历史原因,南票殡仪馆一直未办理环保手续。

根据《中华人民共和国环境保护法》、《中华人民共和国环境影响评价法》以及《建设项目环境影响评价分类管理名录(2021 年版)》,项目应进行环境影响评价工作,本项目属于"五十、社会事业与服务业—122 殡仪馆、陵园、公墓中"殡仪馆;涉及环境敏感区的",因此编制"建设项目环境影响报告表"。企业委托我公司承担该项目的环境影响评价工作。

我公司接受委托后,即组织人员对该项目进行了现场踏勘和资料收集,按照环评技术规范的相关要求,编制出该项目的环境影响报告表。根据《建设项目环境影响报告表编制技术指南》(污染影响类)中的大气专项评价设置原则"排放废气含有毒有害污染物、二噁英、苯并[a]芘、氰化物、氯气且厂界外 500 米范围内有环境空气保护目标的建设项目"需要设置大气专项评价。本项目废气中含有二噁英,项目 500m 范围内存在环境保护目标(兰甲村、黑沟和南票矿区总医院),因此本项目需要编制大气专项评价。

目 录

1.总则	1 -
1.1 编制依据	1 -
1.2 评价目的	1 -
1.3 评价标准	1 -
1.4 评价因子	3 -
1.5 大气环境评价等级及评价范围	4 -
1.6 大气环境保护目标	7 -
2章环境现状调查	8 -
3.大气污染物源强分析	10 -
3.1 现有污染源监测	10 -
3.2 大气污染源强	15 -
4.大气环境影响分析	18 -
5.污染防治措施	29 -
5.1 急冷装置(风冷装置)	29 -
5.2 石灰喷射装置	30 -
5.3 布袋除尘器	32 -
5.4 活性炭吸附装置	32 -
6、大气环境影响达标分析	34 -
建设项目大气环境影响评价自查表	- 37 -

1.总则

1.1 编制依据

- 1.1.1 法律法规及国务院发布的规范性文件
- (1) 《中华人民共和国环境保护法》,2015年1月1日起施行;
- (2) 《中华人民共和国环境影响评价法》,2018年12月29日起施行;
- (3)《中华人民共和国大气污染防治法》,2018年10月26日起施行;
- (5)《建设项目环境保护管理条例》(国务院令第 682 号, 2017 年 10 月 1 日起施行);
 - 1.1.2 相关环评技术导则及技术规范
- (1)《建设项目环境影响评价分类管理名录(2021年版)》(2021年1月1日起施行)
 - (2) 《建设项目环境影响评价技术导则 总纲》(HJ2.1-2016)
 - (3) 《环境影响评价技术导则 大气环境》(HJ2.2-2018)
 - (4) 《环境空气质量标准》(GB3095-2012)
 - (5) 《火葬场大气污染物排放标准》(GB 13801-2015)
 - (6)《产业结构调整指导目录(2019年本)》(2021年修订版)
 - (7) 《排污许可证申请与核发技术规范 总则(试行)》(HJ924-2018)
 - (8) 《排污单位自行监测技术指南 总则》(HJ819-2017)

1.2 评价目的

通过本评价查清南票殡仪馆大气污染物排放现状,根据源强分析结果,预测项目在 运营期对周围区域大气环境可能产生的影响,并针对项目运营带来的环境问题,提出有 效的治理措施及环境监测计划,以指导设计、建设和运营管理,减轻项目运营带来的不 利影响,从环境保护角度论述建设的可行性,为有关部门的决策和管理提供科学的依据。

1.3 评价标准

1.3.1 环境质量标准

建设项目处于环境空气质量二类功能区,大气环境执行《环境空气质量标准》 (GB3095-2012)及其修改单(环保部公告,2018年第29号)的二级标准,HCl执行《环境影响评价技术导则 大气环境》(HJ2.2-2018)中附录 D 其他污染物空气质量浓度限值,二噁英参照日本环境质量标准年均值及折算的小时值执行,具体见表1。

项目	年平均	日平均	小时平均	标准来源
PM_{10}	70	150		
SO_2	60	150	500	
NO_x	50	100	250	《环境空气质量标准》 (GB3095-2012)二级标准及其修改单
CO		4000	10000	(GB3073 2012) 二级和证人来多以干
Нд	0.05		0.3 [©]	
HCL		15 50		《环境影响评价技术导则 大气环境》 (HJ2.2-2018) 附录 D 中"其它污染物空气 质量浓度参考限值
二噁英类	0.6×10 ⁻⁶		3.6×10 ⁻⁶	参照日本环境质量标准年均值
非甲烷总烃			2000	《大气污染物综合排放标准》 (GB16297-1996) (详解)

表 1 环境空气质量标准 (二级标准) 单位: μg/m³

注: ①根据《环境影响评价技术导则 大气环境》(HJ2.2-2018)中 5.3.2.1"各评价因子 8h 平均质量浓度限值 、日平均质量浓度限值或年平均质量浓度限值可分别按 2 倍、3 倍、6 倍折算为 1h 平均质量浓度限值",由此确定日平均质量浓度限值为 2 倍年平均质量浓度限值。

1.3.2 污染物排放标准

本项目火化车间火化机焚烧废气排放执行参照《火葬场大气污染物排放标准》 (GB13801-2015) 中表 2 标准,执行新建单位专用设备(含火化间)的排气筒高度不应低于 12m。排气筒周围半径 200m 距离内有建筑物时,排气筒还应高出最高建筑物 3m以上。具体标准值见表 2。

表 2 《遗体火化大气污染物排放限值》

单位: mg/m³

序号	控制项目	排放限值	污染物排放监控位置
1	烟尘	30	
2	二氧化硫	30	
3	氮氧化物(以 NO2 计)	200	
4	一氧化碳	150	
5	HCl	30	
6	二噁英类(ng-TEQ/m3)	0.5	
7	汞	0.1	

8 烟气黑度(林格曼黑度)级) 1 1 烟囱排放口

项目 200m 范围内最高建筑物为火化间,高度为 12m,因此本项目排气筒高度为 15m

遗物祭品焚烧炉及十二生肖祭祀炉废气执行《火葬场大气污染物排放标准》(GB1 3801-2015)中表 3 标准,详见表 3。

表 3 《遗物祭品焚烧大气污染物排放限值》

单位: mg/m³

序号	控制项目	排放限值	污染物排放监控位置
1	烟尘	80	
2	二氧化硫	100	
3	氮氧化物(以 NO2 计)	300	加克
4	一氧化碳	200	· 烟囱
5	HCl	50	
6	二噁英类(ng-TEQ/m³)	1.0	
2	烟气黑度(林格曼黑度,级)	1	烟囱排放口

项目 200m 范围内最高建筑物为火化间,高度为 12m,因此本项目排气筒高度为 15m

本项目厂内设置食堂,两个灶头,供应员工一日三餐,食堂油烟排放标准见下表。

表 4 《饮食业油烟排放标准(试行)》(GB18483-2001)

规模	小型
最高允许排放浓度(mg/m³)	2.0
净化设施最低去除效率(%)	60

项目非甲烷总烃厂界排放浓度执行《大气污染物综合排放标准》(GB16297-1996)中表 2 新污染源大气污染物排放限值二级标准。厂区内挥发性有机物无组织排放监控点浓度执行《挥发性有机物无组织排放控制标准》(GB 37822-2019)表 A. 1 中特别排放限值要求,见下表 5。

表 5 营运期废气排放标准

	污染源	污染因子	标准浓度限值	执行标准		
	厂界外浓度	非甲烷总烃	4.0mg/m^3	《大气污染物综合排放标准》		
无组织废气	最高点	11. 中风心灶	4.0111g/111	(GB16297-1996) 中表 2 标准限值		
			6mg/m ³			
	厂区内	非甲烷总烃	监控点处 1h 平均			
			浓度值	执行《挥发性有机物无组织排放控		
	/ <u>/ </u>		20mg/m^3	制标准》(GB 37822—2019)		
		非甲烷总烃	监控点处任意一次			
			浓度值			

1.4 评价因子

在项目工程概况和环境概况分析的基础上,通过对污染物排放特征、污染物的毒性、 污染物环境标准和评价标准,确定本工程的环境现状评价因子、环境影响预测因子和总

表 6 环境影响评价因子一览表

环境因素	环境质量现状评价因子	环境影响评价因子	总量控制因子
大气环境	PM ₁₀ 、PM _{2.5} 、SO ₂ 、NOx、CO、O ₃ 、HCl、二噁英、汞、NMHC	PM ₁₀ 、SO ₂ 、NOx、CO、HCl、二 噁英、汞、非甲烷总烃	NOx、非甲烷 总烃

1.5 大气环境评价等级及评价范围

1、评价依据

依据《环境影响评价技术导则-大气环境》(HJ2.2-2018)中 5.3 节工作等级的确定方法,结合项目工程分析结果,选择正常排放的主要污染物及排放参数,采用附录 A 推荐模型中的 AERSCREEN 模式计算项目污染源的最大环境影响,然后按评价工作分级判据进行分级。

(1)P_{max} 及 D_{10%}的确定

依据《环境影响评价技术导则 大气环境》(HJ2.2-2018)中最大地面浓度占标率 Pi 定义如下:

$$P_i = \frac{C_i}{C_{0i}} \times 100\%$$

 P_i ——第 i 个污染物的最大地面空气质量浓度 占标率, %;

 C_i ——采用估算模型计算出的第 i 个污染物的最大 1h 地面空气质量浓度, $\mu g/m^3$;

 C_{0i} ——第 i 个污染物的环境空气质量浓度标准, μ g/m³。

(2)评价等级判别表

评价等级按下表7的分级判据进行划分

表 7 评价等级判别表

评价工作等级	评价工作分级判据
一级评价	Pmax ≥ 10%
二级评价	1% ≤ Pmax<10%
三级评价	Pmax<1%

2、污染源参数

表 8 污染源参数表

编号	名称	排气管中心。		海拔高度	排气 筒高 度	出 口 内 径	烟气流速	烟气温度	年排 放小 时数	污染物	排放速率
单位 m m		m	m	m	m/s	$^{\circ}$ C	h		kg/h		

										PM ₁₀	0.0846
								SO ₂	0.0785		
								NOx	1.095		
1	DA001	31020	4556	129	15	0.55	14.0	120	720	СО	1.382
1 DA001 4 045	045	129	13	0.55	3	120	720	氯化氢	0.03		
										Hg	0.0009
										二噁英	3.96×10 ⁻⁹
								类	3.90×10		
										PM10	0.17
2 DA002			131	15	0.4	16.5 9	120	720	SO2	0.13	
	21022	4556							NOx	0.78	
									СО	0.29	
	002							氯化氢	0.05		
										二噁英	1.98×10 ⁻¹¹
									类	1.98×10	
										PM10	0.17
3 DA003	21022 4556							SO2	0.13		
		1556				16.5			NOx	0.78	
	DA003			131	15	0.3	2	120	20 720	СО	0.29
		001				_			氯化氢	0.05	
									二噁英	1.98×10 ⁻¹¹	
										类	1.98×10 ⁻¹¹

表 9 主要废气污染源参数一览表(矩形面源)

污染源名	坐标	(°)	海拔高度		矩形面源		污染物排 放速率 (kg/h)
称	经度	纬度	(m)	长度 (m)	宽度 (m)	有效高 度(m)	NMHC
火化 车间	120. 740043	41. 117044	128. 00	10.00	16. 00	10.00	0.0072

3、项目参数

估算模式所用参数见表 10。

表 10 估算模型参数表

参数			取值
拉声/ 林杜华顶	城市/农村		农村
城市/农村选项	人口数(城	市人口数)	/
最高环境温	度		43.3

最低环境温	度		-34.4	
土地利用类型		针叶林		
区域湿度条	件		中等湿度	
是否考虑地形	考虑地形		否	
走百 <i>写</i> ^{远地} //	地形数据	分辨率(m)	/	
	考虑岸线熏烟		否	
是否考虑岸线熏烟	岸线距	巨离/m	/	
	岸线	方向/°	/	

(6) 评价工作等级确定

本项目所有污染源的正常排放的污染物的 Pmax 和 D10%预测结果如下: 表 11 Pmax 和 D10%预测和计算结果一览表

污染源名称	评价因子	评价标准(μg/m³)	Cmax(µg/m³)	Pmax(%)	D10%(m)
DA001	PM_{10}	450. 0	1. 5491	0. 3442	/
DA001	SO_2	500. 0	1. 4374	0. 2875	/
DA001	NOx	250. 0	20. 0504	8. 0202	/
DA001	CO	10000.0	25. 3056	0. 2531	/
DA001	HCL	50. 0	0. 5768	1. 1536	/
DA001	Hg	0.3	0.0165	5. 4933	/
DA001	二噁英类	3.6×10^{-6}	0. 000000073	2.0142	/
DA003	PM_{10}	450. 0	5. 2386	1. 1641	/
DA003	SO_2	500. 0	4. 006	0.8012	/
DA003	NOx	250. 0	24. 0359	9. 6144	/
DA003	CO	10000.0	8. 9364	0.0894	/
DA003	氯化氢	50. 0	1.5408	3. 0815	/
DA003	二噁英类	3.6×10^{-6}	0.0000000198	0.0169	/
火化车间	NMHC	2000. 0	14. 238	0.7119	/
DA002	PM_{10}	450. 0	3. 7519	0.8338	/
DA002	SO_2	500. 0	2.8691	0. 5738	/
DA002	NOx	250. 0	17. 2146	6.8858	/
DA002	СО	10000.0	6. 4003	0.064	/
DA002	HCL	50. 0	1. 1035	2. 207	/
DA002	二噁英类	3.6×10^{-6}	0.0000000198	0.0121	/

本项目 Pmax 最大值出现为 DA003 排放的 NOxPmax 值为 9.6144%, Cmax 为 24.0359μg/m³。根据《环境影响评价技术导则 大气环境》(HJ2.2-2018)分级判据,确 定本项目大气环境影响评价工作等级为二级。

评价范围以厂址为中心,边长为 5km 的矩形区域。

1.6 大气环境保护目标

本项目位于辽宁省葫芦岛市南票区兰甲屯乡兰甲屯村,项目厂界外 5000 米范围内的大气环境保护目标名称及相对位置关系见下表。

表 12 环境保护目标一览表

 环境		坐;	标/m	保护		环境	相对	相对厂界
要素	名称	名称 X Y 対象 保护内容		保护内容	功能 区	厂址 方位	距离/m	
	兰甲屯村	310020	4555765		801 户/1420 人		S	40
	下庙子村	309834	4556034		1310 户/23 人	二类功能区	NW	280
大气 环境	南票矿区 总医院	310003	4555344	人群	113 人		S	450
	南票区联 合中学	309302	4556032		516 人		W	754
	南票区城 区 a	310345	4555034		3950 户/12300 人		SE	841
声环境	厂界南侧	40m 兰甲屯	1村居民住宅	2户	《声环境质量标	注准》(GBS	3096-200	8)1类;
地下水环	无							
境	/u							
生态 环境	无							

注 a: 南票区城区保护目标调查,包括了南票区政府、南票区实验中学等政府机关、学校的保护内容

2 章环境现状调查

(1) 基本污染物环境空气质量现状

根据《环境影响评价技术导则 大气环境》(HJ/2.2-2018),数据来源要求优先采用评价范围内国家或地方环境空气质量监测网中评价基准年连续1年的监测数据,或采用生态环境主管部门公开发布的环境空气质量现状数据。

本项目评价范围内常规污染物SO₂、NO₂、CO、PM₁₀、PM_{2.5}和O₃引用《葫芦岛市生态环境质量通报(2022年度)》中的数据,引用数据见下表。

污染物	年评价指标	现状浓度 (µg/m³)	标准值 (µg/m³)	占标率%	达标情况
SO_2	年均值	18	60	30.00	达标
NO ₂	年均值	27	40	67.50	达标
PM ₁₀	年均值	55	70	78.57	达标
PM _{2.5}	年均值	33	35	94.29	达标
CO	24 小时平均第 95 百分位数	1400	4000	35.00	达标
O ₃	8 小时平均第 90 百分位数	154	160	96.25	达标

表 13 区域空气质量现状评价表

根据表13所示,评价区域环境空气质量现状中PM₁₀、PM_{2.5}、SO₂、NO₂年均值,CO 24小时均值、O₃8小时均值均满足《环境空气质量标准》(GB3095-2012)及其修改单(生态环境部2018年29号)中的二级标准要求。因此,判定本项目所在区域属于达标区。

(2) 其他污染物环境空气质量现状监测

根据项目特点,于2023年4月21日-4月28日对HC1、Hg、二噁英进行了补充监测,2023年8月2日-8月8日再次选取非甲烷总烃作为补充监测因子。参照《环境影响评价技术导则 大气环境》(HJ2.2-2018)和《环境二噁英类监测技术规范》(HJ916-2017),在馆区下风向1m处设置一个监测点,其中HC1、Hg、NMHC监测7d,考虑到项目所在区域内除本项目无明显二噁英类排放源,二噁英类监测频次为3d。

①监测布点及监测项目

本项目补充监测点位基本情况见表14。

监测 相对 相对 监测点坐标/m 监测频次 监测因子 监测日期 厂址 厂界 点位 X Υ 方位 距离 名称 二噁英监测 3 天, 监测 厂址 HCl、Hg、 2023. 4. 21 310252 4556087 日均值;HCI监测7天, 下风 NE $1 \, \mathrm{m}$ 二噁英 -4.28向处 监测小时值; Hg 监测 7

表 14 其他污染物补充监测点位基本情况

			天,监测日均值		
	NMHC	2023.8.2-8.8	监测7天,监测小时值	NE	1 m

②评价结果

评价结果见下表。

表 15 环境空气质量现状评价结果

点位名	监测点	(坐标/m	污染物	平均时间	评价标	监测浓度范围	最大浓度占标	超标	达标情
称	X	Y	77条初	十均的則	准μg/m³	$\mu \text{ g/m}^3$	率/%	率%	况
			HC1	小时值	50	0.05L	-	0	达标
厂址		52 4556087	Hg	日均值	0. 1	0. 003L	_	0	达标
下风向处	310252		二噁英 pgTEQ/Nm³	日均值	1.2	0. 0069-0. 012	0. 575-1	0	达标
			非甲烷总烃	小时值	2000	1010-1950	50. 5-97. 5	0	达标

检测结果小于检出限报检出限值加"L"。

由表15可知,项目所在区域特征污染物HCl小时值满足《环境影响评价技术导则 大气环境》(HJ2.2-2018)中附录D限值要求; Hg日均值满足《环境空气质量标准》(GB3095-2012)附录A中年均浓度换算的日均值; 二噁英日均值满足日本环境厅中央环境审议会制定的环境标准中的二噁英年均浓度换算的日均值。

(3) 污染源识别汇总

表 16 本项目废气污染源识别汇总

类 别	污染物 种类	产污	节点	主要污染因子	处理方式及排放去向
		G1	火化机	烟尘、SO ₂ 、NOx、CO、 HCl、汞、二噁英、烟气 黑度	采用"急冷装置+干法脱硫脱酸系统+ 布袋除尘+活性炭吸附"工艺处理后,经 15m 高排气筒 DA001 排放
运	· 床 /=	G2	遗物焚烧炉	烟尘、SO ₂ 、NOx、CO、 HCl、二噁英、烟气黑度	采用"急冷装置+干法脱硫脱酸系统+ 布袋除尘+活性炭吸附"工艺处理后,经 15m 高排气筒 DA002 排放
营期	废气	G3	十二生肖祭 祀焚烧炉	烟尘、SO ₂ 、NOx、CO、 HCl、二噁英、烟气黑度	采用"急冷装置+干法脱硫脱酸系统+ 布袋除尘+活性炭吸附"工艺处理后,经 15m 高排气筒 DA003 排放
		G4	储油罐	非甲烷总烃	无组织排放
		G5	食堂	油烟	采用油烟净化器处理后,经排烟井排放

本项目不设置备用发电机。

3.大气污染物源强分析

3.1 现有污染源监测

本项目废气主要为火化机废气及遗物祭品焚烧废气,遗体火化一次约 43.2 分钟,年最大火化量 2000 具,约 1440 小时,单台火化机运行时间约 720 小时,焚烧炉单次焚烧约 21.6 分钟,年最大焚烧次数约 2000 次,共计运行约 720 小时。项目为已建项目,馆内火化机、焚烧炉已正常运行,因此项目火化机、焚烧炉源强采用实测法。2023 年 4 月 21 日南票殡仪馆委托辽宁禹宇环境检测有限公司对殡仪馆内现有火化机、遗物焚烧炉和祭品焚烧炉分别进行了废气污染物排放情况监测。馆内现有 3 台火化机型号为航泰 SL-DII B 型燃油火化机,火化机两用一备,火化机规格型号一致,监测点位分别设置在1#火化机废气治理系统进、出口处;现有 1 台遗物焚烧炉和 1 台十二生肖祭祀炉,十二生肖祭祀炉分别于十二生肖祭祀炉废气治理系统进出口处设置监测点位;因焚烧炉进口处不满足监测要求,因此仅对焚烧炉废气治理系统出口进行了监测。监测期间,火化机、遗物焚烧炉和十二属祭品焚烧炉均满负荷运行。

(1) 检测点位及检测项目

表 17 检测点位、检测项目及检测频率表

序号	检测点位	检测项目	检测频率
1	火化机废气治理系统进口	颗粒物、二氧化硫、氮氧化物、氯化氢、	
2	火化机废气治理系统出口	硫化氢、氨、汞及其化合物、烟气黑度、	
2	人名加及《石垤尔列山口	一氧化碳、二噁英。	₩ 1 工
3	。 遗物焚烧炉废气治理系统出口	颗粒物、二氧化硫、氮氧化物、一氧化碳、	检测1天,
	返彻灭航》及 【相互求先出口	氯化氢、烟气黑度、二噁英。	每天3次。
4	十二生肖祭祀炉废气治理系统进口	颗粒物、一氧化碳	
5	十二生肖祭祀炉废气治理系统出口	颗粒物、一氧化碳	

(2) 分析方法、使用仪器及检出限

表 18 分析方法、使用仪器及检出限一览表

单位 mg/m³

项目	分析方法	使用仪器	检出限
氯化氢	固定污染物排气中氯化氢的测定 硫氰酸汞分光光度法	紫外分光光度计 SP 752	0.9mg/m ³
	НЈ/Т27-1999	YYYQ-007	
	固定污染源废气	十万分之一天平	
	低浓度颗粒物的测定 重量法	MS 105	1.0mg/m ³
颗粒物	НЈ 836-2017	YYYQ-008	
秋粒初	固定污染源排气中颗粒物测定与气态	十万分之一天平	
	污染物采样方法	MS 105	/
	GB/T 16157-1996 (修改单)	YYYQ-008	

注:本次	检测所用仪器经计量检定合格。		
※二噁 英	环境空气和废气 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱仪 HJ 77.2-2008	气相色谱-双聚焦高分辨磁质 谱 DFS	/
烟气含 氧量	《空气和废气监测分析方法》(第四版增补版)国家环境保护总局(2003)第五篇烟气含氧量第二章六、(三)	自动烟尘烟气测试仪 GH-60E,YYYQ-082 GH-60E,YYYQ-078	1
烟气动 压	固定污染源排气中颗粒物测定与气态 污染物采样方法 7.5.1 测量气流的动压 GB/T 16157-1996	自动烟尘烟气测试仪 GH-60E,YYYQ-082 GH-60E,YYYQ-078	1
烟气流量	固定污染源排气中颗粒物测定与气态 污染物采样方法 7 排气流速、流量的测定 GB/T 16157-1996	自动烟尘烟气测试仪 GH-60E, YYYQ-082 GH-60E, YYYQ-077 GH-60E, YYYQ-078 GH-2, YYYQ-023	/
含湿量	固定污染源排气中颗粒物测定与气态 污染物采样方法 5.2 排气中水分含量的测定 GB/T 16157-1996	自动烟尘烟气测试仪 GH-60E,YYYQ-082 GH-60E,YYYQ-078	1
温度	固定污染源排气中颗粒物测定与气态 污染物采样方法 5.1 排气温度的测定GB/T 16157-1996	自动烟尘烟气测试仪 GH-60E,YYYQ-082 GH-60E,YYYQ-078	1
汞及其 化合物	原子荧光分光光度法 《空气和废气监测分析方法》(第四版 增补版)国家环境保护局(2007年)第五篇 第三章 七(二)	原子荧光光度计 AFS-8510 YYYQ-002	$3\times10^{-3}\mu g/m^3$
林格曼 黑度	固定污染源排放烟气黑度的测定 林格曼烟气黑度图法 HJ/T398-2007	测烟望远镜 HC-10型10*50 YYYQ-046	1
一氧化碳	固定污染源废气 一氧化碳的测定 定电位电解法 HJ 973-2018	自动烟尘烟气测试仪 GH-60E,YYYQ-082 GH-60E,YYYQ-078	3mg/m^3
氮氧化 物	固定污染源废气 氮氧化物的测定 定电位电解法 HJ 693-2014	自动烟尘烟气测试仪 GH-60E,YYYQ-082 GH-60E,YYYQ-078	3mg/m^3
二氧化硫	固定污染源废气 二氧化硫的测定 定电位电解法 HJ 57-2017	自动烟尘烟气测试仪 GH-60E,YYYQ-082 GH-60E,YYYQ-078	3mg/m ³

(3) 检测结果:

表 19 其他废气污染物(不包含二恶英类)检测结果

	测台灶田	火化	机废气治理措施	运进口(4月2 6	5日)	火化和	乳废气治理措 於	 色出口(4 月 20	5目)
	测定结果	第一次	第二次	第三次	最大值	第一次	第二次	第三次	最大值
	标干流量(m³/h)	2270	2081	2071	2270	2369	2150	2125	2369
	基准氧含量(%)	11	11	11	11	11	11	11	11
	含氧量 (%)	15.8	15.6	15.6	15.8	15.4	15.3	15.1	15.4
	噁英类实测浓度,(ngTEQ/Nm³)	0.012	0.0092	0.0077	0.012	0.0061	0.0059	0.0060	0.0061
	二噁英类折算浓度(ngTEQ/Nm³)	0.023	0.017	0.014	0.023	0.011	0.010	0.010	0.011
	排放速率,kgTQE/h	2.72×10 ⁻¹¹	1.91×10 ⁻¹¹	1.59×10 ⁻¹¹	2.72×10 ⁻¹¹	1.45×10 ⁻¹¹	1.27×10 ⁻¹¹	1.28×10 ⁻¹¹	1.28×10 ⁻¹¹
	测宁灶田	火化村	几废气治理措施	进口(4月27	日)	火化材	几废气治理措施	出口(4月27	(日)
	测定结果	第一次	第二次	第三次	最大值	第一次	第二次	第三次	最大值
	标干流量(m³/h)	3147	3222	3128	3222	3530	3438	3490	3530
	基准氧含量(%)	11	11	11	11	11	11	11	11
	含氧量 (%)	8.3	8.5	8.2	8.5	7.8	7.5	7.5	7.8
	烟气流量(m³/h)	5453	5589	5426	5589	4693	4575	4634	4693
颗	实测浓度(mg/m³)	90.2	91.3	92.4	92.4	26.6	28.4	27.6	28.4
粒	折算浓度(mg/m³)	71.0	73.0	72.2	73.0	20.2	21.0	20.4	21.0
物	排放速率(kg/h)	0.28	0.29	0.29	0.29	0.09	0.10	0.10	0.10
二	实测浓度(mg/m³)	7	7	8	8	4	3	5	5
氧	折算浓度(mg/m³)	6	6	6	6	3	2	4	4
化硫	排放速率(kg/h)	0.02	0.02	0.03	0.03	0.01	0.01	0.02	0.02
氮	实测浓度(mg/m³)	133.4	128.8	138.0	138.0	114.2	122.7	115.0	122.7
氧	折算浓度(mg/m³)	105.0	103.0	107.8	107.8	86.5	90.9	85.2	90.9
化 物	排放速率(kg/h)	0.42	0.42	0.43	0.43	0.40	0.42	0.40	0.42

_	实测浓度(mg/m³)	120	116	124	124	100	112	108	118
氧	折算浓度(mg/m³)	94	93	97	97	76	83	80	83
化碳	排放速率(kg/h)	0.38	0.37	0.39	0.39	0.35	0.39	0.38	0.39
氯	实测浓度(mg/m³)	9.02	9.24	8.89	9.24	8.44	8.16	8.68	8.68
化	折算浓度(mg/m³)	7.05	7.11	6.84	7.11	6.39	6.23	6.48	6.48
氢	排放速率(kg/h)	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
	标干流量 (m³/h)	3107	3244	3193	3244	<1	<1	<1	<1
	基准氧含量(%)	11	11	11	11	3422	3449	3749	3749
	含氧量 (%)	8.2	8.0	8.0	8.2	11	11	11	11
	烟气流量 (m³/h)	5394	5634	5507	5634	7.8	7.9	7.6	7.9
Ē	汞及其化合物实测浓度(mg/m³)	6.07×10 ⁻³	6.32×10 ⁻³	6.15×10 ⁻³	6.32×10 ⁻³	4539	4561	4982	4982
Ē	汞及其化合物折算浓度(mg/m³)	4.74×10 ⁻³	4.86×10 ⁻³	4.73×10 ⁻³	4.86×10 ⁻³	6.35×10 ⁻⁴	6.39×10 ⁻⁴	6.53×10 ⁻⁴	6.53×10 ⁻⁴
	汞及其化合物排放速率(kg/h)	1.89×10 ⁻⁵	2.05×10 ⁻⁵	1.96×10 ⁻⁵	2.05×10 ⁻⁵	4.81×10 ⁻⁴	4.88×10 ⁻⁴	4.87×10 ⁻⁴	4.88×10 ⁻⁴
	测定结果	十二生肖领	祭祀炉废气治理	里措施入口(4	月 27 日)	十二生肖	祭祀炉废气治理	里措施出口(4	月 27 日)
	侧足结朱	第一次	第二次	第三次	最大值	第一次	第二次	第三次	最大值
	标干流量 (m³/h)	3628	3599	3584	3628	2775	3056	3027	3056
	基准氧含量(%)	11	11	11	11	11	11	11	11
	含氧量 (%)	19.2	19.6	19.7	19.7	13.9	13.6	13.7	13.9
	烟气流量 (m³/h)	4098	4060	4037	4098	3110	3436	3403	3436
	颗粒物实测浓度(mg/m³)	40.6	42.9	40.1	42.9	22.1	23.4	22.8	23.4
	颗粒物折算浓度(mg/m³)	60.6	62.2	61.7	62.2	31.1	31.6	31.2	31.6
	颗粒物排放速率(kg/h)	0.15	0.15	0.14	0.15	0.06	0.07	0.07	0.07
	一氧化碳实测浓度(mg/m³)	40	46	39	46	33	31	35	35
	一氧化碳折算浓度(mg/m³)	60	66	57	66	46	42	48	48
	一氧化碳排放速率(kg/h)	0.15	0.15	0.14	0.15	0.09	0.09	0.11	0.11

林格曼黑度,级	/	/	/	/	<1	<1	<1	<1		
测点灶田	遗物焚	烧炉出口	口(4月26日)							
测定结果	第一次		第二次	第三	三次	最大值				
标干流量(m³/h)	7194		7075	7	023	7194				
基准氧含量(%)	11		11		11	11				
含氧量(%)	16.8		16.7	1	6.2	16.8				
一三噁英类实测浓度,(ngTEQ/Nm³)	0.0019		0.0028	0.0	0021	0.0028				
二噁英类折算浓度(ngTEQ/Nm³)	0.0045		0.0066	0.0	0043	0.0066				
排放速率,kgTQE/h	1.37×10 ⁻¹¹		1.98×10 ⁻¹¹	1.47	′×10 ⁻¹¹	1.98×10 ⁻¹¹				

3.2 大气污染源强

(1) 火化机、遗物焚烧炉、十二生肖祭祀炉废气源强

①火化废气:

火化废气污染物主要包括烟尘、SO₂、NOx、CO、二噁英、汞和氯化氢。参照《火葬场大气污染物排放标准编制说明》中给出的统计数据,具体见下表。

项目	烟尘	SO ₂	NOx	СО	氯化氢	汞	二噁英
统计值	141	10.9	101.4	128	3.75	0.3	3.3
单位	mg/m ³	ngTEQ/m ³					

表 20 其他废气污染物(不包含二恶英类)检测结果

对比项目污染源实际监测数据,本次评价采用了保守估算方法,废气源强参照《火葬场大气污染物排放标准编制说明》中给出的统计数据进行计算。

根据厂家提供资料,火化机火化遗体使用的燃料为柴油,每具遗体平均火化时间 43.2min,设计年火化遗体约 2000 具,燃油用量 13L/具。3 台两用一备,单台火化机年 运行时间合计为 720h,参考实际监测结果和风机系统参数,项目单台火化机尾气烟气量 为 6000m³/h。火化机监测数据为 1#火化机废气治理系统进出口监测数据,项目共三台 火化机(两用一备),因此废气源强以两台同时运行计算。

《火葬场大气污染物排放标准编制说明》列举了"急冷+碱液淋洗器+旋风离心器+活性炭吸附+布袋除尘"组合工艺中的各污染物的去除效率,本项目火化废气治理工艺为"急冷装置+干法脱硫脱酸系统+布袋除尘+活性炭吸附",参照《火葬场大气污染物排放标准编制说明》给定工程实例,按烟尘去除率95%、二噁英去除90%、Hg去除率75%计算,涉及干法脱硫脱酸系统部分,根据设计单位提供的设计参数,SO2去除率约40%、HCI去除率30%、CO去除率10%、NOx去除率10%。火化车间废气经火化机尾气处理系统(急冷装置+干法脱硫脱酸系统+袋式除尘器+活性炭吸附系统)处理后经由1根15m高排气筒DA001排放。

污染源	污染物名称	产生浓度 (mg/m³)	产生量 (t/a)	拟处理措施	去除率	排放浓度 (mg/m³)	排放量(t/a)	运行 时间 (h)
	颗粒物	141	1.218	急冷装置+	95%	7.1	0.061	
	二氧化硫	10.9	0.094	干法脱硫脱	40%	6.5	0.057	
火化机	氮氧化物	101.4	0.876	酸系统+布	10%	91.3	0.788	720
	一氧化碳	128	1.106	袋除尘+活	10%	115.2	0.995	
	氯化氢	3.75	0.0324	性炭吸附	30%	2.6	0.0227	

表 21 本项目废气源强核算结果一览表

汞及其化合物	0.3	0.0026	75%	0.075	0.00065	
二噁英	3.3×10 ⁻⁶	2.85×10 ⁻⁸	90%	3.3×10 ⁻⁷	2.85×10 ⁻⁹	

②遗物焚烧炉和十二生肖祭祀炉

遗物焚烧炉和十二生肖祭祀炉根据现场实际监测结果项目选取监测数据中的最大值进行源强核算,现场监测过程中,焚烧炉废气处理系统进口管路不符合监测要求,未 开展监测,焚烧炉废气处理系统污染物产生量参考火化机各单元处理效率,反向核算; 十二生肖祭祀炉污染物参考遗物焚烧炉废气源强。具体废气源强核算结果如下表:

运行 产生浓度 产生量 排放浓度 排放量(t/a) 拟处理措施 去除率 污染源 污染物名称 时间 (mg/m^3) (mg/m^3) (t/a)(h) 颗粒物 0.1224453.3 2.448 95% 22.7 急冷装置+ 二氧化硫 28.9 0.156 40% 17.3 0.0936 干法脱硫脱 遗物焚烧 氮氧化物 115.6 0.624 10% 104 0.5616 酸系统+布 720 炉 一氧化碳 0.232 10% 38.7 0.2088 43 袋除尘+活 氯化氢 9.5 6.7 0.036 0.051 30% 性炭吸附 2.64×10⁻⁹ 二噁英 1.43×10⁻¹⁰ 1.43×10^{-11} 2.64×10^{-8} 90% 颗粒物 809.5 2.448 95% 40.5 0.1224 急冷装置+ 二氧化硫 51.6 0.156 40% 31.0 0.0936 干法脱硫脱 氮氧化物 206.3 0.624 10% 185.7 0.5616 十二生肖 酸系统+布 720 祭祀炉 一氧化碳 76.7 0.232 10% 69 0.2088 袋除尘+活 氯化氢 17 0.051 30% 11.9 0.036 性炭吸附 二噁英 1.43×10⁻¹⁰ 4.71×10^{-9} 1.43×10^{-11} 4.71×10^{-8} 90%

表 22 本项目废气源强核算结果一览表

非正常工况:

本项目涉及非正常排放原因可能为废气处理设施部分失效或故障等导致污染物排放量增加。当营运期非正常工况时,污染物排放情况如下:

		衣 23 本坝日)	友	该 异结果一觉和	र		
 污染源	污染物名称	拟处理措施	去除率	排放速率	排放浓度	运行时	拟发生
17/200	13.7.6.7.6	1000年1月76	ムか子	(kg/h)	(mg/m^3)	间 (h)	频次
	颗粒物		20%	1.3536	112.8		
	二氧化硫		0	0.1308	10.9		
	氮氧化物	急冷装置+干	0	1.2168	101.4		
火化机	一氧化碳	法脱硫脱酸系统+布袋除尘+	0	1.536	128	1	
	氯化氢	活性炭吸附	0	0.045	3.75		2 次/a
	汞及其化合物		20%	0.00288	0.24		
	二噁英		10%	3.564×10 ⁻⁸	0.297×10^{-6}		
遗物焚烧	颗粒物	急冷装置+干	20%	2.72	362.7	1	
炉	炉 二氧化硫 法脱硫脱酸系	0	0.217	28.9	1		

表 23 本项目废气源强核算结果一览表

	氮氧化物	统+布袋除尘+	0	0.82	109.4	
	一氧化碳	活性炭吸附	0	0.32	43	
	氯化氢		0	0.07	9.4	
	二噁英		10%	1.78×10 ⁻¹⁰	2.376×10^{-8}	
	颗粒物		20%	2.72	647.6	
	一氧化碳	急冷装置+干	0%	0.217	51.6	
十二生肖	二氧化硫	法脱硫脱酸系	0	0.82	195.4	1
祭祀炉	氮氧化物	统+布袋除尘+	0	0.32	76.7	
	氯化氢	活性炭吸附	0	0.07	16.9	
	二噁英		10%	1.78×10 ⁻¹⁰	4.243×10^{-8}	

(2) 柴油储罐工作过程损失废气

项目使用柴油作为火化遗体的燃料,项目火化间内有 1 座 3000L 的油罐,油罐设有呼吸阀,油罐在工作过程中由于装卸料会产生挥发性有机物,污染物为挥发性有机物(以 NMHC 计)。

本次油品挥发系数来自于《排放源统计调查产排污核算方法和系数手册》中"油品储运销污染物排放系数手册:辽宁省"。

 油品
 产污工序
 总罐容
 储罐类型
 无油气回收装置

 柴油
 工作过程损失(吨/吨周转量)
 /
 固定顶储罐
 5.0×10⁻⁵

 静置损失(吨.年)
 /
 固定顶储罐
 /

表 24 储油罐废气源强核算一览表

本项目柴油年装卸量为 26t/a, 因此工作过程损失 NMHC 产生量为 0.0013t/a, 产生量较少, 废气随车间门窗无组织排放。项目每年装油、卸油工作时间为 180h, 则排放速率为 0.0072kg/h。

(3) 食堂油烟

建设项目职工食堂大气污染主要来自于食堂产生的油烟。本项目劳动定员 23 人,每人日耗油 25g,本项目日耗食用色拉油约 0.575kg/d,年用量约 210kg/a。

接日进行烧炸工况 1.2 小时计,油的平均挥发量为总耗油量的 3%。排风量为 3000 m³/h,通过油烟净化效率 60%的油烟净化器处理后在屋顶排放,食堂油烟产生及排放情况见下表,可满足 GB18483-2001《饮食业油烟排放标准》(试行)中的油烟排放标准。

- 11. NE	污染物		产生情况		治理技	昔施		排放情况	Ţ	排放时
产生源	名称	核算 方法	浓度 (mg/m³)	产生量 (t/a)	工艺	去除 率%	核算方法	浓度 (mg/m³)	排放量 t/a	间

表 25 油烟废气产排情况

AL NET	污染物	产生情况			治理措施		排放情况			排放时
产生源	名称	核算 方法	浓度 (mg/m³)	产生量 (t/a)	工艺	去除 率%	核算方 法	浓度 (mg/m³)	排放量 t/a	r) , , 1
食堂	油烟	类比 法	4.8	0.0063	油烟净化器	60	物料衡 算	1.92	0.0252	438h

4.大气环境影响分析

依据《环境影响评价技术导则-大气环境》(HJ2.2-2018)中 5.3 节工作等级的确定方法,结合项目工程分析结果,选择正常排放的主要污染物及排放参数,采用附录 A 推荐模型中的 AERSCREEN 模式计算项目污染源的最大环境影响,然后按评价工作分级判据进行分级。

(1) P_{max} 及 D_{10%}的确定

依据《环境影响评价技术导则 大气环境》(HJ2.2-2018)中最大地面浓度占标率 Pi 定义如下:

$$P_i = \frac{C_i}{C_{0i}} \times 100\%$$

 P_i ——第 i 个污染物的最大地面空气质量浓度 占标率, %;

 C_i ——采用估算模型计算出的第 i 个污染物的最大 1h 地面空气质量浓度, $\mu g/m^3$;

 C_{0i} ——第 i 个污染物的环境空气质量浓度标准, $\mu g/m^3$ 。

(2) 评价等级判别表

评价等级按下表 24 的分级判据进行划分

表 26 评价等级判别表

评价工作等级	评价工作分级判据
一级评价	Pmax ≥ 10%
二级评价	1% ≤ Pmax<10%
三级评价	Pmax<1%

(3) 污染物评价标准

污染物评价标准和来源见下表 25。

表 27 污染物评价标准

污染物名称	功能区	取值时间	标准值(µg/m³)	标准来源
SO_2	二类限区	一小时	500.0	环境空气质量标准(GB 3095-2012)
СО	二类限区	一小时	10000.0	环境空气质量标准(GB 3095-2012)
PM ₁₀	二类限区	日均	150.0	环境空气质量标准(GB 3095-2012)
NOx	二类限区	一小时	250.0	环境空气质量标准(GB 3095-2012)

Hg	二类限区	一小时	0.3	环境空气质量标准(GB 3095-2012),小时值取年均值 6 倍
HCL	二类限区	一小时	50.0	《环境影响评价技术导则 大气环境》 (HJ2.2-2018) 附录 D中"其它污染物 空气质量浓度参考限值
二噁英类	二类限区	一小时	3.6E-6	日本环境质量标准年均值
NMHC	二类限区	一小时	2000. 0	《大气污染物综合排放标准》 (GB16297-1996)(详解)

(4) 污染源参数

本项目火化机两用一备,火化机废气通过2套"急冷装置+干法脱硫脱酸系统+布袋除尘+活性炭吸附"废气治理系统处理后,统一经15m排气筒DA001排放;遗物焚烧废气通过1套"急冷装置+干法脱硫脱酸系统+布袋除尘+活性炭吸附"废气治理系统处理后,统一经15m排气筒DA002排放;12生肖祭祀炉废气通过1套"急冷装置+干法脱硫脱酸系统+布袋除尘+活性炭吸附"废气治理系统处理后,统一经15m排气筒DA003排放;具体污染源参数见下表。

表 28 污染源参数表

编号	名称	排气筒	标/	海拔高度	排气筒 高度	出口 内径	烟气流速	烟气 温度	年排放 小时数	污染物	排放速率
	 单位	X m	Y	m	m	m	m/s	$^{\circ}$	h		kg/h
	十匹	111	111	111	111	111	111/3		11	PM ₁₀	0.0846
				SO ₂	0.0785						
	DA001 31020 4556 4 045 129 15 0.55 14.0 3 120			NOx	1.095						
1		120	720	CO	1.382						
				氯化氢	0.03						
				Hg	0.0009						
					二噁英类	3.96×10 ⁻⁹					
								120	720	PM ₁₀	0.17
										SO ₂	0.13
2	DA002		4556 062	131	15	0.4	16.5			NOx	0.78
			002	131	13	0.4	9	120	720	CO	0.29
										氯化氢	0.05
										二噁英类	1.98×10 ⁻¹¹
										PM ₁₀	0.17
	3 DA003 31023 4556 061 131 15 0.3 16.5 2			16.5			SO ₂	0.13			
3			120	20 720	NOx	0.78					
				CO	0.29						

					氯化氢	0.05
					二噁英类	1.98×10 ⁻¹¹

表 29 主要废气污染源参数一览表(矩形面源)

污染源名	坐标(°)		海拔高度		矩形面源		污染物排 放速率 (kg/h)
称	经度	纬度	(m)	长度 (m)	宽度 (m)	有效高 度(m)	NMHC
火化 车间	120. 740043	41. 117044	128. 00	10.00	16. 00	10.00	0.0072

(5)项目参数

估算模式所用参数见下表

表 30 估算模型参数表

参数		取值			
城市/农村选项	城市/农村		农村		
规印/农们起坝	人口数(城	市人口数)	/		
最高环境温度	度		43.3		
最低环境温度	度		-34.4		
土地利用类型		针叶林			
区域湿度条件	学	中等湿度			
是否考虑地形	考虑地形		否		
足口 为心地//	地形数据	分辨率(m)	/		
	考虑岸	生线熏烟			
是否考虑岸线熏烟	岸线趴	巨离/m	/		
	岸线为	方向/°	/		

(7) 评价工作等级确定

本项目所有污染源的正常排放的污染物的 Pmax 和 D10%预测结果如下:

表 31 Pmax 和 D10%预测和计算结果一览表

污染源名称	评价因子	评价标准(μg/m³)	Cmax(µg/m³)	Pmax(%)	D10%(m)
DA001	PM_{10}	450. 0	1. 5491	0. 3442	/
DA001	SO_2	500. 0	1. 4374	0. 2875	/
DA001	NOx	250. 0	20. 0504	8. 0202	/
DA001	CO	10000.0	25. 3056	0. 2531	/
DA001	HCL	50. 0	0. 5768	1. 1536	/
DA001	Hg	0. 3	0. 0165	5. 4933	/

DA001	二噁英类	3.6×10^{-6}	0. 000000073	2. 0142	/
DA003	PM_{10}	450. 0	5. 2386	1. 1641	/
DA003	SO_2	500. 0	4. 006	0.8012	/
DA003	NOx	250. 0	24. 0359	9. 6144	/
DA003	CO	10000.0	8. 9364	0. 0894	/
DA003	氯化氢	50. 0	1. 5408	3. 0815	/
DA003	二噁英类	3.6×10^{-6}	0. 00000000198	0.0169	/
火化车间	NMHC	2000. 0	14. 238	0.7119	/
DA002	PM_{10}	450. 0	3. 7519	0.8338	/
DA002	SO_2	500. 0	2.8691	0. 5738	/
DA002	NOx	250. 0	17. 2146	6.8858	/
DA002	CO	10000.0	6. 4003	0.064	/
DA002	HCL	50.0	1. 1035	2. 207	/
DA002	二噁英类	3.6×10^{-6}	0.0000000198	0.0121	/

本项目 Pmax 最大值出现为 DA003 排放的 NOxPmax 值为 9.6144%, Cmax 为 24.0359μg/m³。根据《环境影响评价技术导则 大气环境》(HJ2.2-2018)分级判据,确 定本项目大气环境影响评价工作等级为二级,不进行进一步预测与评价,只对污染物排放量进行核算。评价范围以厂址为中心,边长 5000m,面积 25km²。

(8) 估算结果 本项目所有污染源的正常排放的污染物的 Pmax 和 D10%预测结果见下表 20~表 26: 表 32 DA001 排气筒估算模式计算结果一览表

			DA	.001		
下风向距离	PM ₁₀ 浓度	PM10占标率	SO ₂ 浓度	SO₂占标率	NOx 浓度	NOx 占标率
	$(\mu g/m^3)$	(%)	$(\mu g/m^3)$	(%)	$(\mu g/m^3)$	(%)
50.0	0. 9395	0. 2088	0.8718	0. 1744	12. 1605	4.8642
100.0	1. 5318	0. 3404	1. 4214	0. 2843	19. 8265	7. 9306
200.0	1. 0350	0. 2300	0.9604	0. 1921	13. 3963	5. 3585
300.0	0. 7747	0. 1722	0.7189	0. 1438	10. 0277	4. 0111
400.0	0. 7115	0. 1581	0.6602	0. 1320	9. 2096	3. 6839
500.0	0. 6195	0. 1377	0. 5748	0. 1150	8. 0178	3. 2071
600. 0	0. 5279	0. 1173	0. 4898	0.0980	6.8326	2. 7330
700. 0	0. 4502	0. 1001	0. 4178	0. 0836	5. 8276	2. 3310
800.0	0. 3871	0.0860	0. 3592	0. 0718	5. 0099	2. 0040
900. 0	0. 3361	0.0747	0. 3118	0.0624	4. 3496	1. 7398
1000.0	0. 2949	0.0655	0. 2737	0. 0547	3. 8175	1.5270
1200. 0	0. 3497	0.0777	0. 3244	0. 0649	4. 5256	1.8102
1400. 0	0. 3880	0.0862	0.3600	0. 0720	5. 0221	2. 0088
1600. 0	0. 3812	0. 0847	0. 3538	0. 0708	4. 9345	1. 9738

1800. 0	0. 3628	0. 0806	0. 3366	0.0673	4. 6953	1.8781
2000. 0	0. 3425	0.0761	0. 3178	0.0636	4. 4331	1.7732
2500. 0	0. 2937	0.0653	0. 2725	0. 0545	3.8009	1.5204
下风向最大浓 度	1. 5491	0. 3442	1. 4374	0. 2875	20. 0504	8. 0202
下风向最大浓 度出现距离	92. 0	92. 0	92. 0	92. 0	92. 0	92. 0
D10%最远距离	/	/	/	/	/	/

表 33 DA001 排气筒估算模式计算结果一览表(续1)

			DA	.001		
下风向距离	CO 浓度	CO 占标率	HCL 浓度	HCL 占标	Hg 浓度	Hg 占标率
	$(\mu g/m^3)$	(%)	$(\mu g/m^3)$	率(%)	$(\mu g/m^3)$	(%)
50.0	15. 3477	0. 1535	0. 3498	0. 6996	0.0100	3. 3316
100.0	25. 0230	0. 2502	0.5704	1. 1407	0.0163	5. 4319
200.0	16. 9074	0. 1691	0. 3854	0. 7707	0.0110	3. 6702
300.0	12. 6559	0. 1266	0. 2885	0. 5769	0.0082	2. 7473
400.0	11. 6235	0. 1162	0. 2649	0. 5299	0.0076	2. 5232
500.0	10. 1193	0. 1012	0. 2307	0. 4613	0.0066	2. 1967
600. 0	8. 6235	0. 0862	0. 1966	0. 3931	0.0056	1.8720
700. 0	7. 3550	0. 0735	0. 1676	0. 3353	0.0048	1. 5966
800.0	6. 3231	0.0632	0. 1441	0. 2882	0.0041	1. 3726
900. 0	5. 4896	0. 0549	0. 1251	0. 2503	0.0036	1. 1917
1000. 0	4. 8181	0. 0482	0. 1098	0. 2196	0.0031	1. 0459
1200. 0	5. 7118	0.0571	0. 1302	0. 2604	0.0037	1. 2399
1400. 0	6. 3384	0.0634	0. 1445	0. 2889	0.0041	1. 3759
1600. 0	6. 2278	0.0623	0. 1420	0. 2839	0.0041	1. 3519
1800. 0	5. 9259	0. 0593	0. 1351	0. 2701	0.0039	1. 2864
2000. 0	5. 5950	0. 0559	0. 1275	0. 2551	0.0036	1. 2145
2500. 0	4. 7971	0.0480	0. 1093	0. 2187	0.0031	1. 0413
下风向最大浓 度	25. 3056	0. 2531	0. 5768	1. 1536	0. 0165	5. 4933
下风向最大浓 度出现距离	92. 0	92. 0	92. 0	92. 0	92. 0	92. 0
D10%最远距离	/	/	/	/	/	/

表 34 DA001 排气筒估算模式计算结果一览表(续2)

	DA001				
[*]从[P] 此 齿	二噁英类浓度(μg/m³)	二噁英类占标率(%)			
50. 0	4.4×10^{-8}	1. 2216			
100. 0	7.2×10^{-8}	1. 9917			
200.0	4.8×10 ⁻⁸	1. 3457			

300.0	3.6×10^{-8}	1. 0073
400.0	3.3×10^{-8}	0. 9252
500. 0	2.9×10^{-8}	0.8054
600. 0	2. 5×10 ⁻⁸	0. 6864
700. 0	2.1×10^{-8}	0. 5854
800.0	1. 8×10 ⁻⁸	0. 5033
900.0	1.6×10^{-8}	0. 4369
1000. 0	1.4×10^{-8}	0. 3835
1200. 0	1.2×10^{-8}	0. 4546
1400. 0	1.8×10^{-8}	0. 5045
1600. 0	1. 8×10 ⁻⁸	0. 4957
1800. 0	1.7×10^{-8}	0. 4717
2000. 0	1.6×10^{-8}	0. 4453
2500. 0	1.4×10^{-8}	0. 3818
下风向最大浓度	7.3×10^{-8}	2. 0142
下风向最大浓度出现距离	92. 0	92. 0
D10%最远距离	/	/

表 35 DA002 排气筒估算模式计算结果一览表

			DA	.002		
下风向距离	PM ₁₀ 浓度	PM ₁₀ 占标	SO2浓度	SO2占标	NOx 浓度	NOx 占标
	$(\mu g/m^3)$	率(%)	$(\mu g/m^3)$	率(%)	$(\mu g/m^3)$	率(%)
50.0	2. 6335	0. 5852	2. 0139	0. 4028	12. 0831	4.8332
100.0	3. 5520	0. 7893	2. 7162	0. 5432	16. 2974	6. 5190
200. 0	2. 4509	0. 5446	1.8742	0. 3748	11. 2453	4. 4981
300.0	2. 2517	0. 5004	1. 7219	0. 3444	10. 3313	4. 1325
400.0	1.8298	0. 4066	1. 3993	0. 2799	8. 3956	3. 3582
500.0	1. 4568	0. 3237	1. 1140	0. 2228	6. 6841	2. 6737
600.0	1. 1758	0. 2613	0.8991	0. 1798	5. 3948	2. 1579
700.0	0. 9676	0. 2150	0. 7399	0. 1480	4. 4396	1. 7758
800.0	1. 0106	0. 2246	0. 7728	0. 1546	4. 6369	1.8547
900.0	1. 1473	0. 2550	0.8773	0. 1755	5. 2641	2. 1056
1000.0	1. 2237	0. 2719	0. 9358	0. 1872	5. 6146	2. 2458
1200. 0	1. 1831	0. 2629	0. 9047	0. 1809	5. 4283	2. 1713
1400.0	1. 0917	0. 2426	0.8348	0. 1670	5. 0090	2.0036
1600. 0	0. 9986	0. 2219	0. 7637	0. 1527	4. 5820	1.8328
1800. 0	0. 9219	0. 2049	0. 7050	0. 1410	4. 2297	1.6919
2000. 0	0. 9449	0. 2100	0. 7226	0. 1445	4. 3355	1.7342
2500. 0	0.8769	0. 1949	0. 6705	0. 1341	4. 0232	1.6093
下风向最大浓 度	3. 7519	0. 8338	2. 8691	0. 5738	17. 2146	6. 8858

下风向最大浓 度出现距离	81. 0	81. 0	81. 0	81. 0	81. 0	81. 0
D10%最远距 离	/	/	/	/	/	/

表 36 DA002 排气筒估算模式计算结果一览表(续)

			DA	.002		
下风向距离	CO 浓度	CO 占标率	HCL 浓度	HCL 占标	二噁英类浓	二噁英类
	$(\mu g/m^3)$	(%)	$(\mu g/m^3)$	率(%)	度(μg/m³)	占标率(%)
50.0	4. 4924	0. 0449	0. 7746	1. 5491	0.0000	0.0085
100.0	6. 0593	0.0606	1. 0447	2. 0894	0.0000	0.0115
200.0	4. 1809	0. 0418	0. 7209	1. 4417	0.0000	0.0079
300.0	3.8411	0. 0384	0.6623	1. 3245	0.0000	0.0073
400.0	3. 1214	0.0312	0. 5382	1. 0764	0.0000	0.0059
500.0	2. 4851	0. 0249	0. 4285	0.8569	0.0000	0.0047
600.0	2. 0058	0.0201	0. 3458	0. 6916	0.0000	0.0038
700.0	1.6506	0. 0165	0. 2846	0. 5692	0.0000	0.0031
800.0	1. 7240	0.0172	0. 2972	0. 5945	0.0000	0.0033
900.0	1. 9572	0.0196	0. 3374	0. 6749	0.0000	0.0037
1000.0	2. 0875	0. 0209	0. 3599	0. 7198	0.0000	0.0040
1200. 0	2. 0182	0. 0202	0.3480	0. 6959	0.0000	0.0038
1400.0	1.8623	0.0186	0. 3211	0. 6422	0.0000	0.0035
1600. 0	1. 7036	0.0170	0. 2937	0. 5874	0.0000	0.0032
1800. 0	1. 5726	0. 0157	0. 2711	0. 5423	0.0000	0.0030
2000. 0	1. 6119	0.0161	0. 2779	0. 5558	0.0000	0.0031
2500. 0	1. 4958	0.0150	0. 2579	0. 5158	0.0000	0.0028
下风向最大浓 度	6. 4003	0.0640	1. 1035	2. 2070	0.0000	0. 0121
下风向最大浓 度出现距离	81. 0	81.0	81. 0	81. 0	81.0	81.0
D10%最远距 离	/	/	/	/	/	/

表 37 DA003 排气筒估算模式计算结果一览表

	DA003								
下风向距离	PM ₁₀ 浓度	PM ₁₀ 占标	SO2浓度	SO2占标	NOx 浓度	NOx 占标			
	$(\mu g/m^3)$	率(%)	$(\mu g/m^3)$	率(%)	$(\mu g/m^3)$	率(%)			
50.0	3. 6636	0.8141	2.8016	0. 5603	16. 8095	6. 7238			
100.0	4. 3389	0. 9642	3. 3180	0.6636	19. 9079	7. 9632			
200.0	3. 8371	0.8527	2. 9343	0. 5869	17. 6055	7. 0422			
300.0	2.8579	0. 6351	2. 1855	0. 4371	13. 1127	5. 2451			
400.0	2. 0608	0. 4580	1. 5759	0. 3152	9. 4554	3. 7822			
500.0	1. 6403	0. 3645	1. 2543	0. 2509	7. 5261	3. 0104			
600.0	1.8101	0. 4022	1. 3842	0. 2768	8. 3052	3. 3221			

700.0	2. 0155	0. 4479	1. 5413	0. 3083	9. 2476	3. 6990
800.0	1. 9725	0. 4383	1. 5084	0. 3017	9. 0503	3. 6201
900.0	1.8628	0. 4140	1. 4245	0. 2849	8. 5470	3. 4188
1000.0	1. 7468	0. 3882	1. 3358	0. 2672	8. 0147	3. 2059
1200.0	1. 7678	0. 3928	1. 3518	0. 2704	8. 1111	3. 2444
1400.0	1. 6976	0. 3772	1. 2982	0. 2596	7. 7890	3. 1156
1600.0	1. 5977	0. 3550	1. 2218	0. 2444	7. 3306	2. 9322
1800. 0	1. 4919	0. 3315	1. 1409	0. 2282	6. 8452	2. 7381
2000.0	1. 3887	0. 3086	1.0619	0. 2124	6. 3717	2. 5487
2500.0	1. 1801	0. 2622	0. 9024	0. 1805	5. 4146	2. 1658
下风向最大浓 度	5. 2386	1. 1641	4. 0060	0.8012	24. 0359	9. 6144
下风向最大浓 度出现距离	26. 0	26. 0	26. 0	26. 0	26. 0	26. 0
D10%最远距 离	/	/	/	/	/	/

表 38 DA003 排气筒估算模式计算结果一览表(续)

			DA	.003		
下风向距离	CO 浓度	CO 占标率	HCL 浓度	HCL 占标	二噁英类浓	二噁英类
	$(\mu g/m^3)$	(%)	$(\mu g/m^3)$	率(%)	度(μg/m³)	占标率(%)
50.0	6. 2497	0.0625	1. 0775	2. 1551	0.0000	0.0119
100.0	7. 4017	0.0740	1. 2761	2. 5523	0.0000	0.0140
200. 0	6. 5456	0.0655	1. 1286	2. 2571	0.0000	0.0124
300.0	4. 8752	0.0488	0.8406	1.6811	0.0000	0.0092
400.0	3. 5155	0. 0352	0.6061	1. 2122	0.0000	0.0067
500.0	2. 7982	0.0280	0. 4824	0. 9649	0.0000	0.0053
600. 0	3. 0878	0. 0309	0. 5324	1.0648	0.0000	0.0059
700. 0	3. 4382	0. 0344	0. 5928	1. 1856	0.0000	0.0065
800.0	3. 3649	0. 0336	0. 5801	1. 1603	0.0000	0.0064
900. 0	3. 1777	0.0318	0. 5479	1. 0958	0.0000	0.0060
1000.0	2. 9798	0. 0298	0. 5138	1. 0275	0.0000	0.0057
1200. 0	3. 0157	0.0302	0. 5199	1. 0399	0.0000	0.0057
1400.0	2. 8959	0.0290	0. 4993	0. 9986	0.0000	0.0055
1600. 0	2. 7255	0.0273	0. 4699	0. 9398	0.0000	0.0052
1800. 0	2. 5450	0. 0255	0. 4388	0.8776	0.0000	0.0048
2000. 0	2. 3690	0. 0237	0. 4084	0.8169	0.0000	0.0045
2500.0	2. 0131	0.0201	0. 3471	0.6942	0.0000	0.0038
下风向最大浓 度	8. 9364	0. 0894	1. 5408	3. 0815	1×10^{-9}	0. 0169
下风向最大浓 度出现距离	26. 0	26. 0	26. 0	26. 0	26. 0	26. 0
D10%最远距	/	/	/	/	/	/

离			

表 39 火化车间无组织废气预测结果一览表

工员台职家	火化车	间
下风向距离	NMHC 浓度(μg/m³)	NMHC 占标率(%)
50. 0	5. 679	0. 2839
100.0	3. 870	0. 1935
200. 0	2. 412	0. 1206
300. 0	1. 797	0.0898
400.0	1.403	0. 0701
500. 0	1. 131	0.0566
600. 0	0. 937	0.0469
700. 0	0. 794	0. 0397
800.0	0. 684	0. 0342
900. 0	0. 598	0.0299
1000. 0	0. 529	0. 0264
1200. 0	0. 426	0. 0213
1400. 0	0. 353	0. 0176
1600. 0	0. 299	0.0150
1800. 0	0. 259	0. 0129
2000. 0	0. 227	0.0113
2500. 0	0. 171	0.0085
下风向最大浓度	14. 238	0. 7119
下风向最大浓度出现距离	9. 0	9. 0
D10%最远距离		

估算模式已考虑了最不利的气象条件,根据估算结果,本项目 Pmax 最大值出现为 DA003 排放的 NOx Pmax 值为 9.6144%,Cmax 为 24.0359µg/m³。项目所在区域主导风 向为西南风,项目最近保护目标为西南侧 40 米的花甲屯村居民,位于主导风向的上风 向,受到的影响较小。

(9) 污染物核算

本项目有组织排放量核算见下表。

表 40 大气污染物有组织排放量核算表

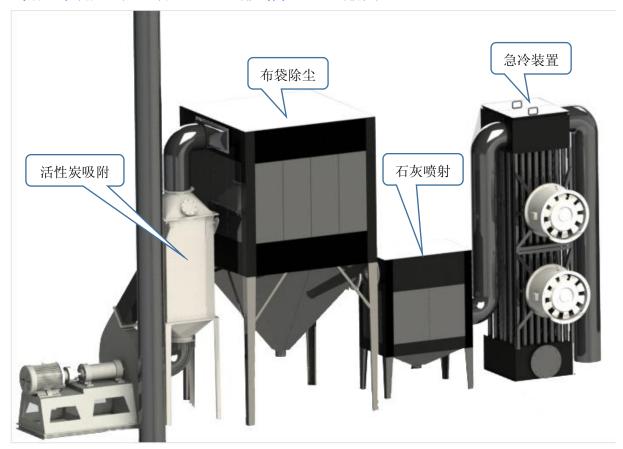
序 号	排放口编 号	污染物		核算排放 浓度µg/m³	核算排放 速率 kg/h	核算年 排放量 t/a
		火化机 废气	颗粒物	7050	0.0846	0.0609
1	DA001		SO_2	6540	0.0785	0.0565
)/Z	NOx	91260	1.095	0.7885	

			HCl	6480	0.06	0.0432	
			СО	115200	1.3824	0.9953	
			汞	75	0.0009	0.000648	
			二噁英	0.00033	3.96×10 ⁻⁹	2.8512×10 ⁻⁹	
			颗粒物	22700	0.17	0.1224	
			SO_2	17300	0.13	0.0936	
		遗物焚烧炉	NOx	104000	0.78	0.5616	
2	DA002	废气	HCl	6700	0.05	0.036	
			СО	38700	0.29	0.2088	
			二噁英	2.64×10 ⁻⁶	1.98×10 ⁻¹¹	1.4256×10 ⁻¹¹	
		-		颗粒物	40500	0.17	0.1224
				SO_2	30950	0.13	0.0936
2	D 4 002	十二生肖	NOx	185700	0.78	0.5616	
3	DA003	祭祀炉废 气	HCl	11900	0.05	0.036	
			СО	69000	0.29	0.2088	
			二噁英	0.00000471	1.98×10 ⁻¹¹	1.4256×10 ⁻¹¹	
				颗粒物		0.3057	
				SO_2		0.2437	
有组织排放量合计			NOx		1.9117		
		HCl			0.1152		
			СО		1.4129		
				汞		0.000648	
				二噁英		2.88×10 ⁻⁹	

表 41 大气污染物无组织排放量核算表

序	排放口	产物	污染物	主要污染	国家或地方污染物持	非放标准	年排放
号	编号	环节		防治措施	标准名称	浓度限值/	量/(t/a)
						$(\mu g/m^3)$	
1	/	储油	NMHC	/	《大气污染物综合排放标	4	0.0013
		罐			准》(GB16297-1996)		
	无组织排放总计						
	无组织	排放总计	_	NHMC	0.00	13	

表 42 大气污染物排放量核算表

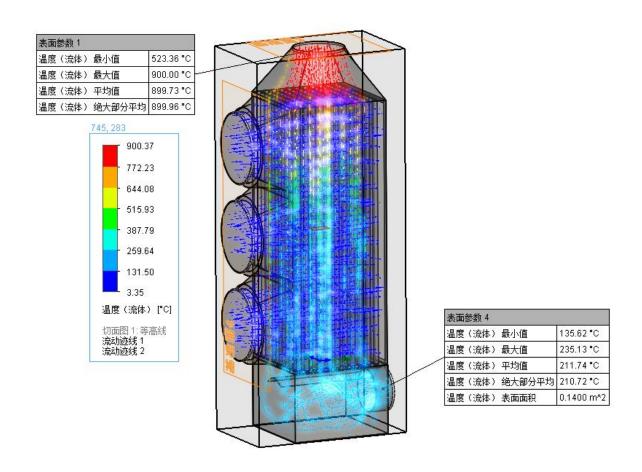

序号 污染物 年排放量(t/a)	
------------------	--

1	颗粒物	0.3057				
2	SO ₂	0.2437				
3	NOx	1.9117 0.1152				
4	HCl					
5	СО	1.4129				
6	汞	0.000648				
7	二噁英	2.88×10 ⁻⁹				
8	NMHC	0.0013				

5.污染防治措施

项目火化机及火化机废气治理设施、焚烧炉废气治理设施、12生肖祭祀炉废气治理设施均由威海航泰环保设备有限公司提供。航泰公司以"节能、低碳、环保、美观、智能"为研发理念,成功研发获得国家发明专利的"火化机烟气全干法后处理系统"。公司发明的智能控制火化机及配套尾气净化处理设备,环保指标皆达到国家标准。

项目火化机废气通过 2 套"急冷装置+干法脱硫脱酸系统+布袋除尘+活性炭吸附"废气治理系统处理后,统一经 15m 排气筒 DA001 排放;


焚烧废气通过 1 套"急冷装置+干法脱硫脱酸系统+布袋除尘+活性炭吸附"废气治理系统处理后,统一经 15m 排气筒 DA002 排放; 12 生肖祭祀炉废气通过 1 套"急冷装置+干法脱硫脱酸系统+布袋除尘+活性炭吸附"废气治理系统处理后,统一经 15m 排气筒 DA003 排放。

5.1 急冷装置

为避免二噁英在低温时的再次合成,项目火化机及焚烧炉废气治理系统应首先设置 急冷装置,将燃烧后的烟气经过急速降温至 250℃以下。烟气降温可使烟气中残留的二 噁英类结合成颗粒,克服了从头生成,结合成颗粒的二噁英类污染物将在末端消除处理

时被彻底收集。

急冷装置又名热交换器,有高效热管换热器、列管水冷式热交换器等,考虑到北方 冬季严寒天气,项目急冷装置采用列管矩阵组合方式,有较高的传热系数,约为管壳式 换热器的三至五倍。同时换热器结构紧凑,单位体积内的换热面积为管壳式换热器的数 倍,也不象管壳式换热器那样要预留抽出管束的检修场所(除非吊出装置位置进行检 修),因而实现相同的换热使命时,换热器的占地面积约为管壳式换热器的五分之一至 十分之一。

5.2 干法脱硫脱酸系统

酸性气体包括二氧化碳、二氧化氮、氯化氢、三氧化硫、二氧化硫等,净化工艺分为干法、半干法和湿法三种,每种工艺有其组合形式,也各有优缺点。

干法脱酸是将石灰粉或小苏打喷入烟道或干法脱酸塔中,使其与酸性气体接触并发生反应。生成产物的一部分经烟道或干法脱酸塔底部排出,一部分与粉尘一起由除尘器捕集下来,经排灰收集系统收集后再进行深化处理。净化的烟气经引风机从烟囱排放至大气。干法脱酸具有操作方便、投资成本低等特点,但干法工艺原理是干粉与烟气接触反应,反应接触面小,干粉的用量比较高。

半干法脱酸是雾化后的碱液喷入吸收塔中与酸性气体反应,确保碱液雾滴与烟气充分混合。净化的烟气经引风机从烟囱排入大气。半干法工艺技术成熟,在垃圾焚烧中运用比较多。

湿法脱酸用的比较多的是石灰石石膏法和钠碱法。湿法工艺对烟气污染物的去除效果好,炉后烟气经除尘后进入湿式脱酸塔,烟气与碱液反应,以去除烟气污染物,净化后的烟气经引风机从烟囱排出。脱酸塔排出的废水经处理后方可排放。湿式脱酸塔形式很多,其共同点都是尽可能增加气-液两相接触面积和时间,以提高效率。

通过以上分析,结合项目所在地经济社会发展状况和地方相关对大气污染物控制的要求,本项目结合烟气极冷的需要,采用石灰干法脱硫脱酸。于急冷装置后方设置干法脱酸塔采用 5mm(或以上)耐高温、耐腐蚀的 304 不锈钢板,要有隔热、耐热技术措施,保证碱性消石灰粉、氧化剂与酸性气体充分中和,达到除去烟气中有害酸性物质的目的。装置整体密封性能好,无漏气现象。10 年内不被气体腐蚀穿透。

脱硫石灰通过消石灰喷入装置喷入干式脱酸塔,与烟气进行化学反应,达到脱酸的目的。

原理如下: SO₃+Ca(OH)₂=CaSO₄+H₂O

 $SO_2+Ca(OH)_2=CaSO_3+H_2O$

2HCL+ Ca(OH)₂=CaCL₂+2H₂O

烟气净化处理系统中采用消石灰喷入的供料装置、吸收剂装置设置在急冷塔与布袋除尘器之间,通过烟道上的吸收剂混合器,使吸收剂均匀地混合于烟气中,并在布袋除尘器的袋壁上沉积,形成滤饼,使沉积的吸收剂继续吸收烟气中气态污染物,利用消石灰中和反应能力,在急冷塔与布袋除尘器之间串联了干式反应装置,消石灰粉末通过定量给料装置气送入干式脱酸塔,烟气从底部进入文丘里反应器,消石灰粉由高压空气喷入反应器,气固两相相遇,经过喉部时,由于截面积缩小,烟气速度增加,产生高度紊流及气、固混合,使烟气中的酸性气体与消石灰粉充分接触反应,从而再次去除酸性气体,烟气中夹带 Ca(OH)2 粉向上流运过程中,由于 Ca(OH)2 粉较重,不断有 Ca(OH)2 下落,下落至接近塔底又被吹起,这样,在塔底形成密相区,塔上部形成稀相区。Ca(OH)2 和烟气中的 SO2、SO3、HCL 等发生化学反应,生成 CaSO4、CaSO3、CaCl2等。同时烟气中有 CO2 存在,还会消耗部分 Ca(OH)2生成 CaCO3。

当烟气进入布袋除尘器后,未反应完全的消石灰粉末被吸附在布袋表面,继续吸收有害物质和与烟气的酸性气体进行反应。

本项目干法脱酸塔在布袋除尘器前。反应温度为 126-290℃的条件下,采用生石灰(CaO)作脱硫剂,一次填充量为 0.5t,补充量约为 1kg/具,全年使用量约为 2t/a。

5.3 布袋除尘器

火化机及遗物焚烧废气除尘装置采用布袋除尘器,布袋除尘器具有处理风量大、占地面积小、净化效率高、工作可靠、结构简单、维修量小等特点,是一种成熟的比较完善的高效除尘设备。含尘气体通过滤布纤维时,大于 1μm 的粉尘由于惯性作用仍保持直线运动撞击到纤维上而被捕集。粉尘颗粒直径越大,惯性作用也越大。当粉尘颗粒在0.2μm 以下时,由于粉尘极为细小而产生如气体分子热运动的布朗运动,增加了粉尘与滤布表明的接触机会,使粉尘被捕集。由于火化机及遗物焚烧废气中颗粒物浓度较低且粒径偏小,故布袋除尘器除尘效率较比普通工况较低,参考辽宁禹宇环境检测有限公司于 2023 年 4 月 27 日对南票殡仪馆进行的监测数据来看,项目火化机及遗物焚烧废气除尘装置除尘效率可达 66%。

5.4 活性炭吸附装置

活性炭吸附装置是处理有机废气、臭味处理效果最好的净化设备。活性炭纤维是超越于颗粒活性炭的高效吸附材料,具有高度发达的微孔结构,比表面积大,吸附容量高,吸、脱附速度快,净化效果好,在简单条件下可完全脱附的特点,并耐酸、耐碱、耐高低温、不易粉化;活性炭纤维对气相和液相中的有机物质及无机杂质有优良的吸附作用,浓度范围广,可处理高浓度及微量、痕量的被吸附物;活性炭纤维对含氯有机物有极强吸附作用,对消除重金属汞、二噁英类作用显著。参考辽宁禹宇环境检测有限公司于2023年4月27日对南票殡仪馆进行的监测数据来看,项目火化机及遗物焚烧废气活性炭吸附装置对汞及其化合物、二噁英类的去除效率分别为88%和47%。

各系统主要性能参数如下:

(1) 火化机废气处理系统:

处理烟气量: 6000m³/h;

烟气温度: <200℃;

石灰喷射装置 Ca/S: 2.5;

布袋面积: 168m²:

布袋克重: 550g/m²;

布袋更换周期: 3年;

(2) 焚烧炉废气处理系统:

处理烟气量: 7500m³/h;

烟气温度: <200℃;

石灰喷射装置 Ca/S: 2.5:

布袋面积: 210m²:

布袋克重: 550g/m²;

布袋更换周期: 3年;

活性炭填充量: 0.3t;

活性炭碘值: 800mg/g;

活性炭比表面积: ≥750m²/g;

活性炭更换周期: 3个月;

活性炭填充量: 0.375t;

活性炭碘值: 800mg/g;

活性炭比表面积: ≥750m²/g;

活性炭更换周期: 3个月;

(3) 十二生肖祭祀炉废气处理系统:

处理烟气量: 4200m³/h;

烟气温度: <200℃;

布袋面积: 110m²:

布袋克重: 550g/m²;

布袋更换周期: 3年;

综上所述,项目各系统废气治理系统处理能力满足运行需要,参考《火葬场大气污染物排放标准征求意见稿编制说明》,该说明中推荐的组合工艺分别有"急冷装置+布袋除尘器+活性炭吸附装置"和"急冷装置+碱液淋洗器+旋风离心器+活性炭喷射装置+布袋除尘器";本项目废气净化处理系统综合两套组合工艺采用的"急冷装置+干法脱硫脱酸系统+布袋除尘器+活性炭吸附装置",工艺组合符合《火葬场大气污染物排放标准编制说明》推荐的"急冷装置+布袋除尘器+活性炭吸附装置"组合工艺要求,且增加了石灰喷射装置用于处理废气中的SO₂,根据辽宁禹宇环境检测有限公司对殡仪馆内现有火化机、遗物焚烧炉和祭品焚烧炉分别进行的废气污染物排放情况监测结果,采用"急冷装置+石灰喷射装置+布袋除尘器+活性炭吸附装置"工艺处理后的废气能够满足《火葬场大气污染物排放标准》(GB 13801-2015),二噁英治理方式满足《重点行业二噁英污染防治技术政策》中的"废弃物焚烧和遗体火化过程中产生的烟气宜采用高效袋式除尘技术和活性炭喷射等技术进行处理"的要求,项目治理措施可行。

6、大气环境影响达标分析

本项目所在区为环境空气质量达标区,该项目火化机废气通过 2 套"急冷装置+干法脱硫脱酸系统+布袋除尘+活性炭吸附"废气治理系统处理后,统一经 15m 排气筒 DA001 排放; 焚烧废气通过 1 套"急冷装置+干法脱硫脱酸系统+布袋除尘+活性炭吸附"废气治理系统处理后,统一经 15m 排气筒 DA002 排放; 12 生肖祭祀炉废气通过 1 套"急冷装置+干法脱硫脱酸系统+布袋除尘+活性炭吸附"废气治理系统处理后,统一经 15m 排气筒 DA003 排放。具体达标情况见下表:

表 43 废气污染物达标情况分析

+比 + 大 3)百	运 独国 了	排放情况	执行标准	达标情	执行标准		
排放源	污染因子	浓度mg/m³	浓度mg/m³	况	3人(1) 4小1庄		
	烟尘	7.05	30	达标			
	二氧化硫	6.54	30	达标			
	氮氧化物(以 NO2 计)	91.26	200	达标	 《火葬场大气污染		
DA001	一氧化碳	115.2	150	达标	物排放标准》		
211001	HCl	6.48	30	达标	(GB13801-2015) 中表2标准限值		
	二噁英类(ng-TEQ/m³)	0.33	0.5				
	汞	0.075	0.1	达标			
	烟气黑度(林格曼黑度)级)	<1	1	达标			
	烟尘	22.7	80	达标			
	二氧化硫	17.3	100	达标			
	氮氧化物(以 NO2计)	104	300	达标			
DA002	一氧化碳	38.7	200	达标			
	HCl	6.7	50	达标			
	二噁英类(ng-TEQ/m³)	0.00264	1.0	达标	《火葬场大气污染		
	烟气黑度(林格曼黑度,级)	<1	1	达标	物排放标准》 (GB13801-2015)		
	烟尘	40.5	80	达标	中表3标准限值		
DA003	二氧化硫	30.95	100	达标			
	氮氧化物(以 NO ₂ 计)	185.7	300	达标			
	一氧化碳	69	200	达标			
	HCl	11.9	50	达标			
	二噁英类(ng-TEQ/m³)	0.00471	1.0	达标			

烟气黑度(林格曼黑度,级)	<1	1	达标	

由上表可知,火化车间DA001排气筒各污染物排放浓度均满足《火葬场大气污染物排放标准》(GB13801-2015)中表2标准限值要求;焚烧车间DA002、DA003排气筒各污染物排放浓度均满足《火葬场大气污染物排放标准》(GB13801-2015)中表3标准限值要求;项目在采取有效措施治理后,废气污染物对周边环境影响不大。

本项目无组织废气中污染物主要为非甲烷总烃,厂界最近距离为 9m, 经预测, 项目厂界非甲烷总烃排放浓度为 14.238 μ g/m³, 排放浓度均满足《大气污染物综合排放标准》(GB16297-1996)中表 2 标准限值。

7、废气污染源监测计划。

根据污染排放的实际情况及根据《排污单位自行监测技术指南 总则》(HJ819-2017) 中的相关要求,废气监测制度详细内容见下表 33。

表 44 废气监测计划

内容	监测点位	监测项目	检测频率	执行排放标准			
		颗粒物					
		SO ₂					
		NOx					
		CO		《火葬场大气污染物排放			
	15m排气筒DA001	HC1	1 次/半年	标准》(GB13801-2015) 中表2标准			
		汞					
		二噁英					
		ngTEQ/Nm ³					
		烟气黑度					
	15m排气筒DA002	颗粒物					
		SO ₂					
床层		NOx		《火葬场大气污染物排放			
废气		СО	1 次/半年				
		HC1		标准》(GB13801-2015)			
		二噁英		中表3标准			
		ngTEQ/Nm³					
		烟气黑度					
	15m排气筒DA003	颗粒物	1 次/半年				
	131111 (-1271003	烟气黑度	1 00 1 1				
	厂界上风向1个监测点,下 风向3个监测点	非甲烷总烃	1 次/年	《大气污染物综合排放标准》(GB16297-1996)中表2标准限值			
	火化车间外设置1个监测点	非甲烷总烃	1 次/年	《挥发性有机物无组织捐放控制标准》(GB 37822 一2019)			

建设项目大气环境影响评价自查表

工作内容		自查项目										
评	价	评价等级	一级			二级	二级		$\overline{\mathbf{V}}$	三级		
等 级 与 范			边长=50	km		边长	:5~50kr	n	П	边长=	5km	$\overline{\mathbf{V}}$
		评价范围		_								
围	围											
		SO2+NOX 排 放	≥2000t/a			□ 500~2000t/a		a		< 500	t/a	\square
评	价	量										
因子	:)로 W El 크	基本污染	基本污染物(PM ₁₀ 、SO ₂ 、NOx、CO) 包括二次PM2.5								
		评价因子		其他污染物(HCL、Hg、二噁英、NHMC) 不包括二次PM2.5 ☑								
评	价	\~ 16 1~\n.		8 11					标准☑			
标准		评价标准		_								
		环境功能区	一类区			二类区	ζ		-	一类区和	口二类	\boxtimes
***	115	评价基准年		(2018) 年								
	状	环境空气质量现	长期例往		数	上管部1	门发布	的数据			现丬	犬补 充
评价	`	状调查数据来源	据	Г	֓֟֟֝֟֝֟֝֟֟֝֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֟֓֓֓֓֓֓֡֟֓֓֓֡֡֡֓֓֡֡֓֡֓֡֡֡֡֡֡		✓ ✓					
		现状评价	达标区	<u>-</u>		$\overline{\mathbf{V}}$						
污	染	75 7 7 7 7 7	本项目正	常排放	万 源	7		<u> </u>				
1	调	调查内容	本项目非				拟替代			在建、		区域污
查	7 4	7.4.2.1.4 H	现有污染		, , , , , , , , , , , , , , , , , , , ,		污染源	3	建项	目污染》	泉 乡	 上源
			AERM	ADM	AL	JSTA	EDMS	S/A (CALI	PU M	 络模	其他
		预测模型	OD 🗆	S [] L2	000 🗆	EDT	I	FF [' -		
		预测范围	边长>50	lzm.		计长5.	- 50km		П			
		预测因子	边长≥50km									
			Hg、二噁英、NHMC) 不包括二次PM _{2.5} ☑									
		正常排放短期浓	C本项目最大占标率≤100% □ C本项目最大占标率>100% □							,		
	气	度贡献值	し年列日	拟八口	4V-#-5	<u> </u>	Ш	C42	火口斗	以八口勿	N#/	100/1
1 -	气 境	正常排放年均浓 度贡献值 非正常排放1h浓		C木頂	i日島·		玄<100	 /₄□	木币	5日最-	上上	标率≯
1 '	児响		一类区	C/T**)	(H 4)	/ \ \ \ //\	<u> </u>		0%	X 11 4X /	х н 1	// → /
1	测		- 3K	C本项	页目最大占标率≤30%							
	评		二类区	.,, .,, .,, .		30%						
价	VI		C非正常	C非正常持续时 C非正常占标率≤100%□ C非					非正常	 正常占标率 >		
ועו		度贡献值	长()h 🔲					10	100%			
		保证率日平均浓 度和年平均浓度 叠加值										
			C叠加达			C叠加不达标						
		区域环境质量的	k≤20%									
		整体变化情况						k>-20%				
	境	正件文化旧 师							IA NEL D			
环		污染源监测	监测因子: (PM ₁₀ 、SO ₂ 、NOx、 有组织废气监测 ☑ 无监测 □									
1	测		氯化氢、CO、Hg、二噁英、 无组织废气监测 ☑									
计划		77 拉氏县 地湖	NHMC)							अस 🔼		
		环境质量监测	监测因子		7		<u> </u>	′′′′′ /′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′		그 1/1 1수 조	无监	测 🔽
		环境影响	可以接受				``		小巾	可以接受	: Ц	
评	价	大气防护距离	距() [界最	近()	m			1.	70 <i>C</i>
结论) - 34)F 6-1") F	$ _{SO_2: (0.2437)} _{N_1}$					颗粒	拉物:	(0.3057	7)	OC:
		污染源年排放量	t/a		NO	NOx (1.9117) t/a		t/a				(0.001
											3) t/a

注:"□"为勾选项,选项"";"()"为内容填写项。